Electronic Supplementary Information for

Engineering robust interface with dual transfer routes to boost the capability of metal-organic framework derived metal sulfide for energy storage

Zi-Bo Zhai ^a, Ke-Jing Huang ^{a,*}, Xu Wu ^{b,*}, Han Hu ^a, Yun Xu ^a, Rui-Min Chai ^a

^a College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China, E-mail: kejinghuang@163.com

^b College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China, E-mail: xwu@xynu.edu.cn

Figure S1. (a) Zn 2p and (b) S 2p XPS spectral of ZnS/NMC.

Table S1. XPS survey results of ZnS/NMC.

Element	C 1s	N 1s	O 1s	Zn 2p	S 2p
Atomic %	55.5	17.6	11.4	7.9	7.6

Figure S2. SEM image of Zn-MOF.

Figure S3. Electrochemical performance of active carbon (AC) anode. (a) CVs at different scan rates; (b) GCDs at different current densities; (c) capacities at different current densities. Capacities at 1, 2, 3, 5 and 10 A g^{-1} are 60, 54, 47, 39 and 33 mAh g^{-1} , respectively.

Table S2. Capacities of asymmetric devices with different mass ratio of AC andZnS/NMC at the current density of 1 A g⁻¹.

m _{ZnS/NMC} (mg)	1	1	1	1	1
m _{AC} (mg)	1	1.5	2	2.5	2.7
Capacity (mAh g ⁻¹)	42.1	56.9	40.7	29.3	16.9

Figure S4. The LEDs powered by assembled asymmetric device at different times.