[9]aneN₃-based fluorescent receptors for metal ion sensing featuring urea and amide functional groups.

Alessandra Garau, Andrea Bencini, Alexander J. Blake, Claudia Caltagirone, Luca Conti, Francesco Isaia, Vito Lippolis, Riccardo Montis, Palma Mariani, Mariano Andrea Scorciapino.

Electronic Supporting Information (ESI)

INDEX

1. Synthesis of 1,4,7-tris-(N-ethyl-N'-phenyl-2yl)-1,4,7-triazacyclononane (L1)

2. Synthesis of 1,4,7-tris-(N-ethyl-N'-quinolin-2yl)-1,4,7-triazacyclononane (L2)

3. Synthesis of 1,4,7-tris-(N-8-quinolinylacetamide)-1,4,7-triazacyclononane (L3)

4. Synthesis of [ZnL1(Ac)](Ac) (1)

5. Synthesis of [CuL1(Cl)](Cl) (2)

6. Synthesis of [CuL3](NO₃) (3)

Table S1 The stability constants (K_a , M^{-1})^a of 1:1 complexes of L1 and L2 with a variety of anionic guests

Fig. S1 ¹H-NMR of L¹ with TBAF in DMSO- d_6

Fig. S2 ¹H-NMR of L¹ with TBAAcO in DMSO- d_6

Fig. S3 ¹H-NMR of L¹ with TBABzO in DMSO- d_6

Fig. S4 ¹H-NMR of L¹ with TBAH₂PO₄ in DMSO- d_6

Fig. S5 ¹H-NMR of L¹ with TBACI in DMSO- d_6

Fig. S6 ¹H-NMR of L² with TBAAcO in DMSO- d_6

Fig. S7 ¹H-NMR of L² with TBABzO in DMSO- d_6

Fig. S8 ¹H-NMR of L² with TBAH₂PO₄ in DMSO- d_6

Fig. S9 ¹H-NMR of L² with TBACI in DMSO- d_6

Fig. S10 Absorption spectra of L2 upon addition of increasing amounts of $\rm Cd^{2+}$

Fig. S11 Absorption spectra of L2 in the presence of increasing amounts of $\rm Zn^{2+}$

Fig. S12 Absorption spectra of L2 in the presence of increasing amounts of Pb^{2+}

Fig. S13 Absorption spectra of L2 in the presence of increasing amounts of \mbox{Cu}^{2+}

Fig. S14 Changes in the emission spectrum of L2 upon addition of increasing amounts of Cd^{2+}

Fig. S15 Changes in the emission spectrum of L2 upon addition of increasing amounts of Zn^{2+}

Fig. S16 Changes in the emission spectrum of L2 upon addition of increasing amounts of Pb^{2+} Fig. S17 Changes in the emission spectrum of L2 upon addition of increasing amounts of Cu^{2+}

Fig. S17 Changes in the emission spectrum of L2 upon addition of increasing amounts of Cu²⁺

Fig. S18 Normalized fluorescent intensity versus molar ratio plot for ligand L2 upon addition of increasing amounts of Cd^{2+} , Zn^{2+} , Pb^{2+} and Cu^{2+} ions

Fig. S19 Distribution diagram of the protonated species of L3

Fig. S20 Distribution diagrams of the species formed by $\rm Hg^{2+}$ with L3

Fig. S21 Distribution diagrams of the species formed by Cu²⁺ with L3

Fig. S22 Distribution diagrams of the species formed by Cd²⁺ with L3

Fig. S23 Distribution diagrams of the species formed by Cd²⁺ with L3

Fig. S24 Superimposition of the fluorescence emission intensity at 505 nm with the distribution diagrams of the species formed by L3 in the presence of Zn^{2+}

Fig. S25 High and low frequency region of the ¹H-NMR spectra of L3 in the presence of different amounts of Zn²⁺

Fig. S26 Conformers for L3 in the absence of any metal ion.

Fig. S27 Conformers for L3 in the presence of Zn²⁺

Fig. S28 ESI-MS spectrum of a solution of L3 and Zn²⁺ at molar ratio Zn²⁺/L3 of 1.0

Fig. S29 Low and high frequency regions of the ¹H-NMR spectra of L3 at different pH values

Fig. S30 Low field and high field region of the 1 H-NMR spectra of L3 in the presence of different amounts of Hg²⁺

Fig. S31 ESI-MS spectrum at molar ratio Hg²⁺/L3 of 1.0

Fig. S32 ¹H-NMR spectra of a) solution of L3 and Zn^{2+} at molar ratio $Zn^{2+}/L3$ of 0.5, b) solution of L3 and Zn^{2+} in 1:1 molar ratio and addition of 1 equiv. of Hg²⁺ and c) solution of L3 and Hg²⁺ at molar ratio Hg²⁺/L3 of 0.7.

Fig. S33 ESI-MS spectrum of a solution of L3 and Zn^{2+} in 1:1 molar ratio and addition of 1 equiv. of Hg^{2+}

Table S2 Summary of the basic crystallographic parameters for [ZnL1(Ac)](Ac) (1), $[CuL1(Cl)](Cl) \cdot H_2O$ (2) and $[CuL3](NO_3)$ (3)Table S3 Selected Bond Distances (Å) and Angles (°) for [ZnL1(Ac)](Ac) (1), $[CuL1(Cl)](Cl) \cdot H_2O$ (2) and $[CuL3](NO_3)$ (3)

1. Synthesis of 1,4,7-tris-(N-ethyl-N'-phenyl-2yl)-1,4,7-triazacyclononane (L1).

To a solution of 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane (0.30 g,1.16 mmol) in 70 mL of dry CH_2Cl_2 was added in 24 hours under reflux, phenyl-isocyanate (0.27 g, 3.5 mmol) in dry CH_2Cl_2 (30 mL). The white solid was taken off, and the solvent was removed under reduced pressure. The residue was dissolved in CH_2Cl_2 and washed with water. The organic phase was dried over Na_2SO_4 , and the solvent removed under reduced pressure to obtain a colourless oil (0.45 g, 63% yield). ¹H-NMR (DMSO- d_6 , 400 MHz): δ_H 2.70-2.95 (m, 18H, $CH_2CH_2NCH_2$, NCH_2CH_2N), 3.14 (m, 6H, CH_2CH_2NH), 6.39 (s, 3H, NH), 6.92 (t, 3H, J= 8.0 Hz), 7.22 (t, 6H, J= 8.0 Hz), 7.36 (d, 6H, J= 8.0 Hz), 8.74 (s, 3H, NH). MS (ESI): m/z 615 ($[C_{33}H_{45}N_9O_3]^+$).

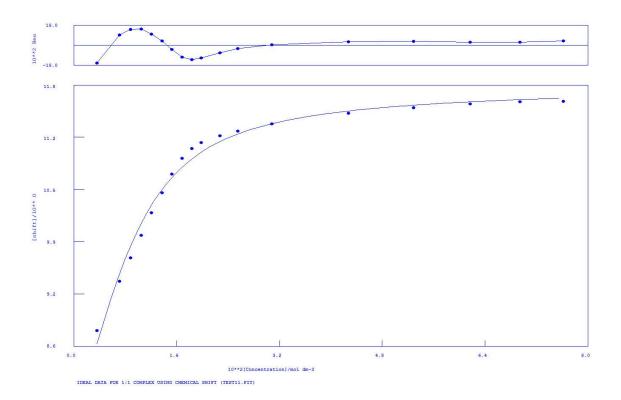
2. Synthesis of 1,4,7-tris-(N-ethyl-N'-quinolin-2yl)-1,4,7-triazacyclononane (L2).

To a solution of 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane (0.38 g,1.47 mmol, 10 mL dry DMF) was added slowly quinolin-2isocyanate (0.76 g, 4.41 mmol) in dry DMF (15 mL). The reaction mixture was stirred at room temperature for 48 hours under nitrogen, and the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and washed with water. The organic phase was dried over Na₂SO₄, and the solvent removed under reduced pressure. The solid was crystallized with methanol to give a white solid (0.25 g, 22% yield). Anal. Found (Calcd) for C₄₂H₄₈N₁₂O₃: C, 66.0 (65.6); H, 6.5 (6.3); N, 21.5 (21.9%). ¹H-NMR (DMSO-d₆, 400 MHz): δ_{H} 2.58-2.72 (m, 18H, CH₂CH₂NCH₂, NCH₂CH₂N), 3.20-3.25 (m, 6H, CH₂CH₂NH), 7.31 (d, 6H, J = 8.0 Hz), 7.34 (t, 3H, J = 8.0 Hz), 7.75 (t, 3H, J = 8.0 Hz), 8.15 (d, 6H, J = 8.0 Hz), 8.70 (s, 3H, NH), 9.48 (s, 3H, NH). MS (ESI): m/z 768 ([C₄₂H₄₈N₁₂O₃]⁺).

3. Synthesis of 1,4,7-tris-(N-8-quinolinylacetamide)-1,4,7-triazacyclononane (L3).

To a solution of 1,4,7-triazacyclonoane (0.10 g,0.77 mmol) and K₂CO₃ (0.64 g, 4.6 mmol) was added 2-chloro-N-8quinolinylacetamide (0.53 g, 2.4 mmol) in anhydrous acetonitrile (30 mL). The reaction mixture was heated at 80°C for 24 hours under nitrogen. The solid was filtered off, and the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and washed with water. The organic phase was dried over Na₂SO₄, and the solvent removed under reduced pressure. The solid was washed overnight with Et₂O to give pale yellow solid (0.25 g, 47% yield). Anal. Found (Calcd) for C₃₉H₃₉N₉O₃: C, 68.3 (68.7); H, 5.6 (5.8); N, 18.2 (18.5%). ¹H-NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 3.39 (s, 12H, NCH₂CH₂N), 3.51 (s, 6H, NCH₂CO), 7.43 (dd, J = 8.3, 4.1 Hz, 3H), 7.54 (m, 6H), 8.20 (dd, J = 6.8, 1.5 Hz, 3H), 8.71 (dd, J = 2.65, 1.5 Hz, 3H), 8.74 (dd, J = 4.9, 1.95 Hz, 3H), 11.19 (s, 3H, NH). ¹³C-NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 57.18 (NCH₂CH₂N), 64.90 (NCH₂CO), 116.53, 122.34, 122.50, 127.65, 128.77, 135.09, 136.95, 139.08, 149.23 (aromatic carbon), 170.36 (CO). ESI-MS: m/z 682 ([C₃₉H₃₉N₉O₃]⁺).

4. Synthesis of [ZnL1(Ac)](Ac) (1). $Zn(Ac)_2$ (3.0 mg, 0.016 mmol) in MeCN (1 mL) was added to a solution of L1 (10.0 mg, 0.016 mmol) in MeCN (5 mL). The solution was stirred at room temperature for 2 hours and colourless crystals were obtained by diffusion of Et₂O vapour in the solution (60% yield). Anal. Found (Calcd) for $C_{37}H_{51}N_9O_7Zn$: C, 55.2 (55.6); H, 6.2 (6.4); N, 15.4 (15.8%).


5. Synthesis of [CuL1(Cl)](Cl) (2). $CuCl_2$ (2.0 mg, 0.016 mmol) in MeCN (1 mL) was added to a solution of L1 (10.0 mg, 0.016 mmol) in MeCN (5 mL). The solution was stirred at room temperature for 2 hours and blue crystals were obtained by diffusion of Et_2O vapour in the solution (65% yield). Anal. Found (Calcd) for $C_{33}H_{46}Cl_2CuN_9O_{3.5}$: C, 51.8 (52.2); H, 6.2 (6.1); N, 16.2 (16.6%).

6. Synthesis of $[CuL3](NO_3)$ (3). $Zn(NO_3)_2 \cdot 6H_2O$ (4.0 mg, 0.015 mmol) in MeCN (1 mL) was added to a solution of L3 (10.0 mg, 0.015 mmol) in MeCN (5 mL). The solution was stirred at room temperature for 2 hours and light blue crystals were obtained by diffusion of Et₂O vapour in the solution (68% yield). Anal. Found (Calcd) for $C_{39}H_{38}CuN_{10}O_6$: C, 57.8 (58.1); H, 4.5 (4.7); N, 17.1 (17.4%).

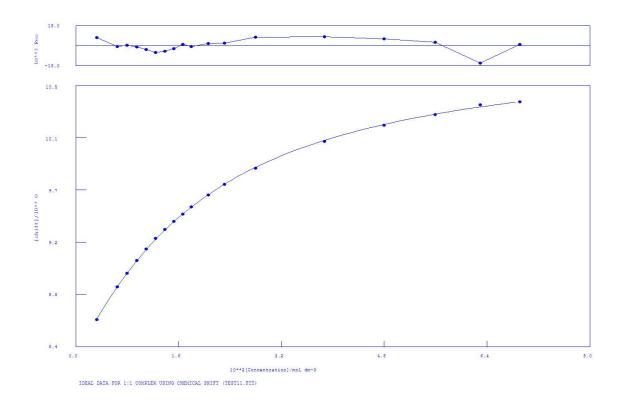
Table S1. The stability constants $(K_a, M^{-1})^a$ of 1:1 complexes of L1 and L2 with a variety of a	nionic
guests (added as TBA salts) at 298K in DMSO-d6 as determined by following the NH resona	nce of
the urea unit.	

the urea unit.			
Anion	L1	L2	
H ₂ PO ₄ ⁻	173	32	
F ⁻	366	deprot.	
Cl	17	deprot. <10	
AcO ⁻ BzO ⁻	67	<10	
BzO⁻	42	16	

^a Errors on association constants are \leq 13% (L2 with H₂PO₄⁻ and AcO⁻ 20% and 28%, respectively).

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 11:10:27 on 05/07/2012

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000


NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 3.65559E+02 2.000E-01 4.897E+01 8.457E+00 K1

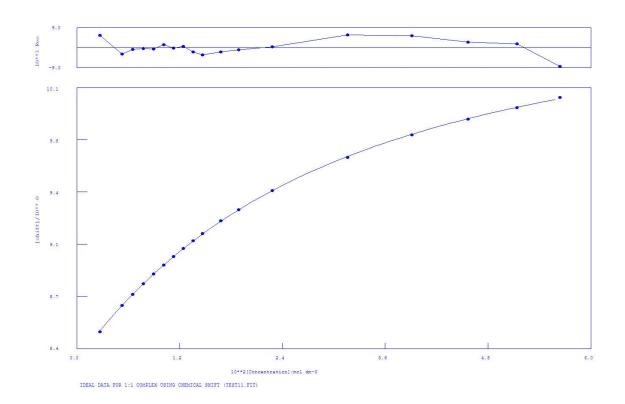
2 1 7.54357E+00 2.000E-01 1.343E-01 3.312E+00 SHIFT M

3 1 1.18062E+01 1.000E+00 6.314E-02 4.603E+00 SHIFT ML

Figure S1. ¹H-NMR of L¹ with TBAF in DMSO- d_6 . The fitting has been obtained following the most downfield shifted NH proton.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 09:06:19 on 03/11/2010

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000


NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 6.67075E+01 2.000E-01 1.142E+00 3.082E+01 K1

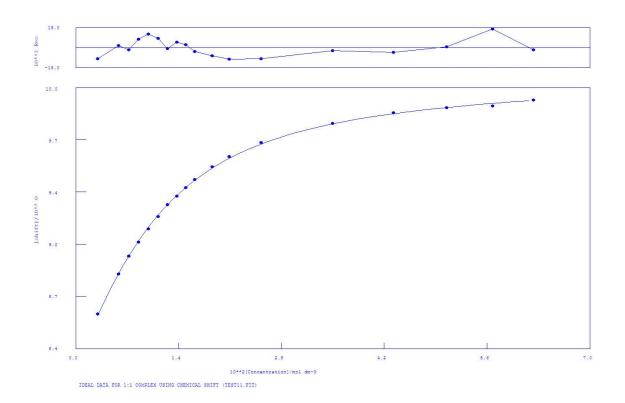
2 1 8.30769E+00 2.000E-01 7.169E-03 7.386E+00 SHIFT M

3 1 1.08720E+01 1.000E+00 1.052E-02 1.480E+01 SHIFT ML

Figure S2. ¹H-NMR of L¹ with TBAAcO in DMSO-*d*₆. The fitting has been obtained following the most downfield shifted NH proton.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 10:35:12 on 03/11/2010

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000


NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 4.21288E+01 2.000E-01 6.213E-01 5.856E+01 K1

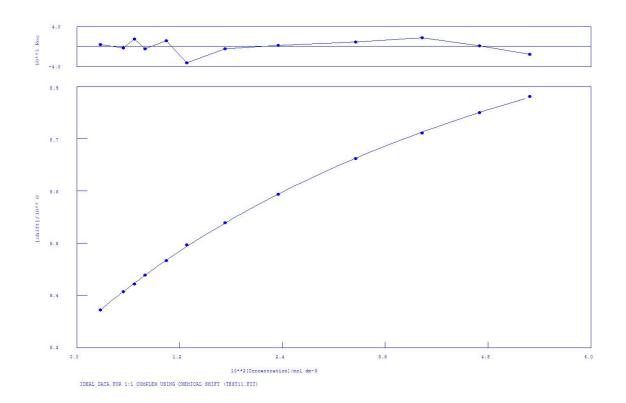
2 1 8.32517E+00 2.000E-01 3.636E-03 7.757E+00 SHIFT M

3 1 1.08375E+01 1.000E+00 1.260E-02 3.444E+01 SHIFT ML

Figure S3. ¹H-NMR of L¹ with TBABzO in DMSO-*d*₆. The fitting has been obtained following the most downfield shifted NH proton.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 10:09:42 on 03/11/2010

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000


NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 1.72872E+02 2.000E-01 4.654E+00 1.522E+01 K1

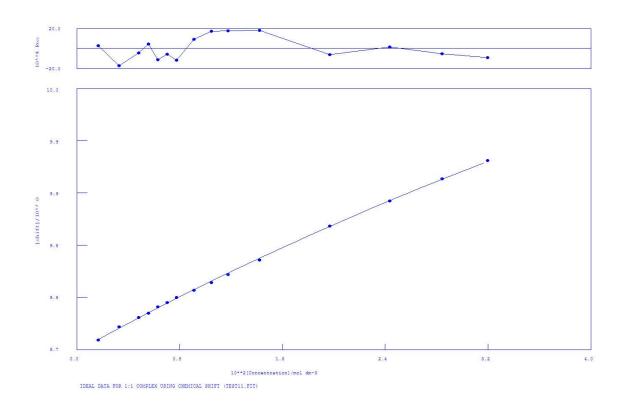
2 1 8.28291E+00 2.000E-01 9.750E-03 4.813E+00 SHIFT M

3 1 1.00970E+01 1.000E+00 8.105E-03 7.562E+00 SHIFT ML

Figure S4. ¹H-NMR of L¹ with TBAH₂PO₄ in DMSO-*d*₆. The fitting has been obtained following the most downfield shifted NH proton.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 09:50:07 on 03/15/2010

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000


NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 1.73529E+01 2.000E-01 6.043E-01 1.738E+02 K1

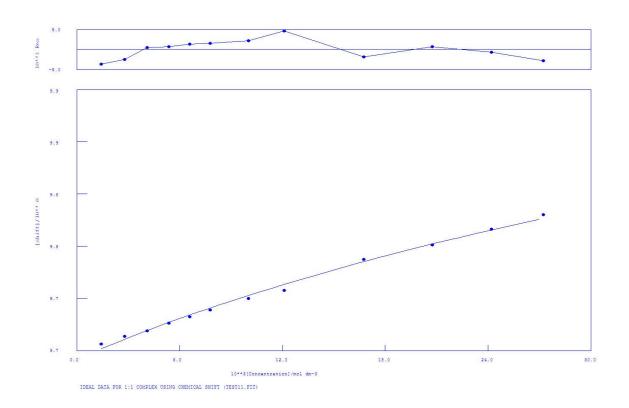
2 1 8.33678E+00 2.000E-01 1.453E-03 6.549E+00 SHIFT M

3 1 9.40885E+00 1.000E+00 1.951E-02 1.351E+02 SHIFT ML

Figure S5. ¹H-NMR of L¹ with TBACI in DMSO- d_6 . The fitting has been obtained following the most downfield shifted NH proton.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 09:26:23 on 07/09/2012

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000

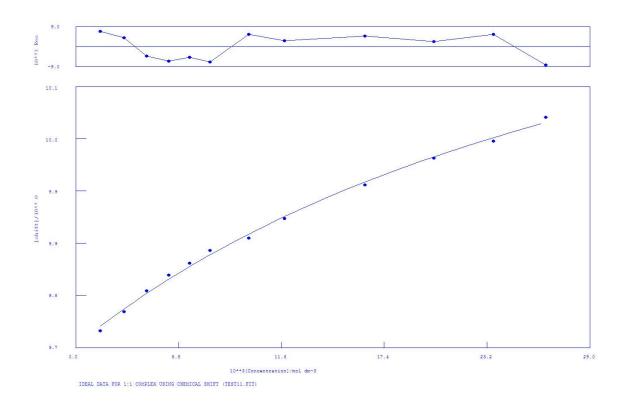

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 6.60500E+00 2.000E-01 7.796E-01 1.192E+03 K1

2 1 9.69753E+00 2.000E-01 1.028E-03 9.114E+00 SHIFT M

3 1 1.09741E+01 1.000E+00 1.198E-01 1.057E+03 SHIFT ML

Figure S6. ¹H-NMR of L² with TBAAcO in DMSO-*d*₆. The fitting has been obtained following the most downfield shifted NH proton.



Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 09:33:01 on 07/09/2012

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000

- NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION
- 1 1 1.63545E+01 2.000E-01 4.516E+00 2.587E+02 K1
- 2 1 9.69360E+00 2.000E-01 1.932E-03 4.837E+00 SHIFT M
- 3 1 1.00531E+01 1.000E+00 6.779E-02 2.233E+02 SHIFT ML

Figure S7. ¹H-NMR of L² with TBABzO in DMSO-*d*₆. The fitting has been obtained following the most downfield shifted NH proton.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 09:39:45 on 07/09/2012

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 3.21314E+01 2.000E-01 6.465E+00 1.915E+02 K1

2 1 9.70390E+00 2.000E-01 6.141E-03 7.097E+00 SHIFT M

3 1 1.04780E+01 1.000E+00 8.593E-02 1.483E+02 SHIFT ML

Figure S8. ¹H-NMR of L² with TBAH₂PO₄ in DMSO-*d*₆. The fitting has been obtained following the most downfield shifted NH proton.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 09:52:48 on 07/09/2012

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = ML FILE: TEST11.FIT IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION 1 1 4.60500E+00 2.000E-01 2.796E-01 1.192E+03 K1 2 1 9.69753E+00 2.000E-01 1.028E-03 9.114E+00 SHIFT M 3 1 1.09741E+01 1.000E+00 1.198E-01 1.057E+03 SHIFT ML

Figure S9. ¹H-NMR of L² with TBACI in DMSO- d_6 . The fitting has been obtained following the most downfield shifted NH proton.

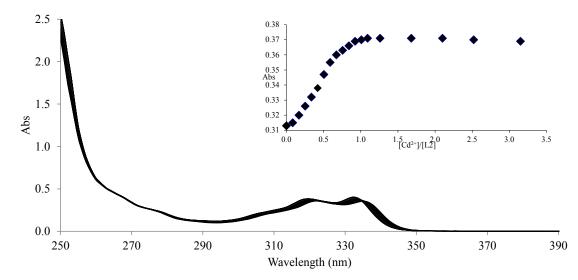


Figure S10. Absorption spectra of L2 upon addition of increasing amounts of Cd^{2+} (inset: absorbance values measured at 335 nm versus $[Cd^{2+}]/[L2]$ molar ratio, $[L2] = 1.99 \cdot 10^{-5}$ M, 25°C).

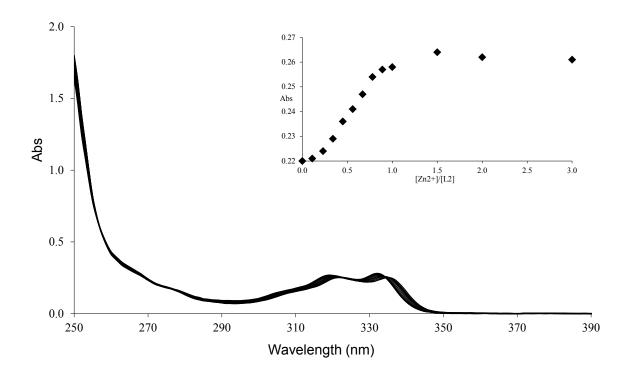


Figure S11. Absorption spectra of L2 in the presence of increasing amounts of Zn^{2+} (inset: absorbance values measured at 335 nm versus $[Zn^{2+}]/[L2]$ molar ratio, $[L2] = 1.99 \cdot 10^{-5}$ M, 25°C).

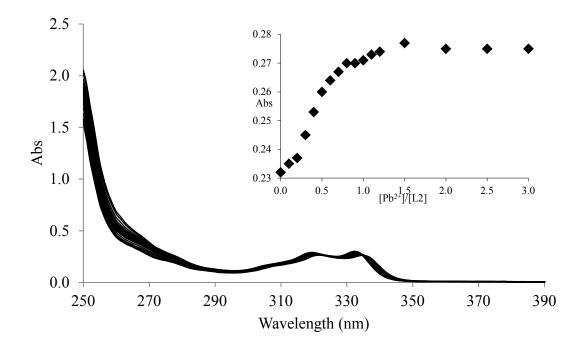


Figure S12. Absorption spectra of L2 in the presence of increasing amounts of Pb^{2+} (inset: absorbance values measured at 335 nm versus $[Pb^{2+}]/[L2]$ molar ratio, $[L2] = 1.99 \cdot 10^{-5}$ M, 25°C).

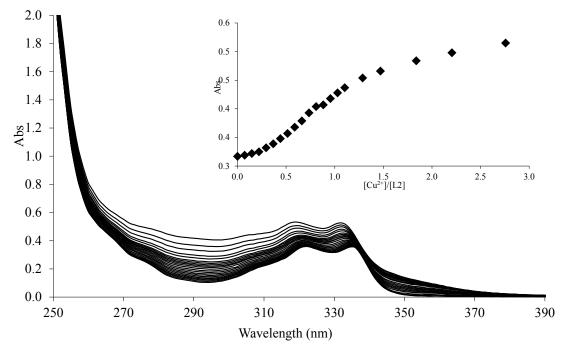


Figure S13. Absorption spectra of L2 in the presence of increasing amounts of Cu^{2+} (inset: absorbance values measured at 335 nm versus [Cu^{2+}]/[L2] molar ratio, [L2] = 1.99·10⁻⁵ M, 25°C).

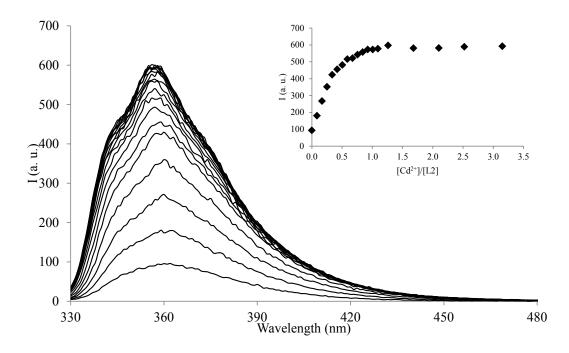


Figure S14. Changes in the emission spectrum of L2 upon addition of increasing amounts of Cd²⁺ (inset: emission values measured at 358 nm *versus* [Cd²⁺]/[L2] molar ratio, [L2] = $1.99 \cdot 10^{-5}$ M, 25°C, λ_{ex} = 323 nm).

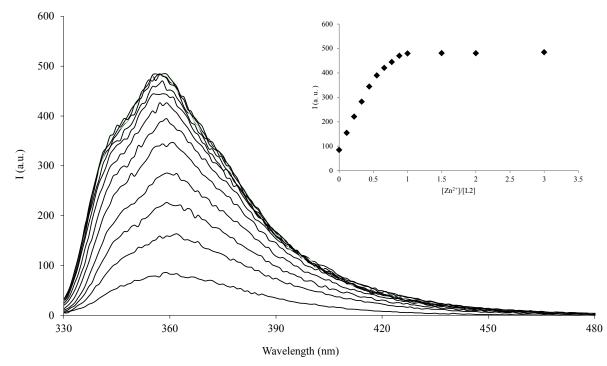


Figure S15. Changes in the emission spectrum of L2 upon addition of increasing amounts of Zn^{2+} (inset: emission values measured at 358 nm *versus* [Zn^{2+}]/[L2] molar ratio, [L2] = 1.99·10⁻⁵ M, 25°C, λ_{ex} = 323 nm).

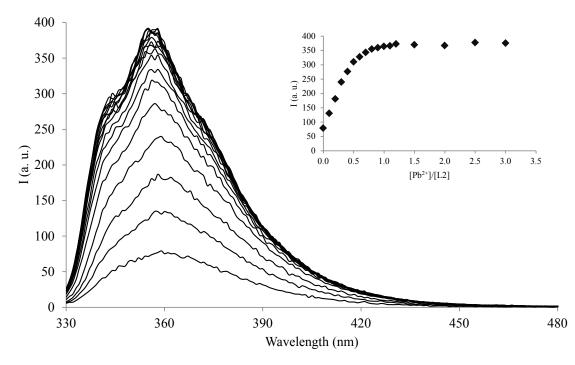


Figure S16. Changes in the emission spectrum of L2 upon addition of increasing amounts of Pb²⁺ (inset: emission values measured at 358 nm *versus* [Pb²⁺]/[L2] molar ratio, [L2] = $1.99 \cdot 10^{-5}$ M, 25°C, $\lambda_{ex} = 323$ nm).

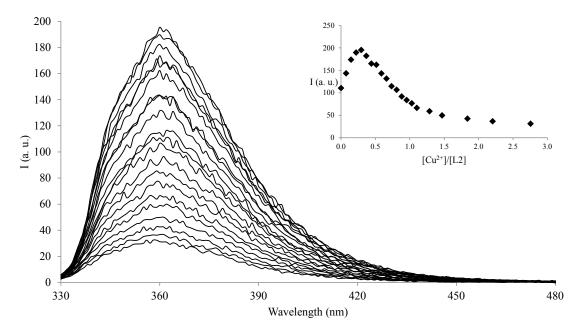


Figure S17. Changes in the emission spectrum of L2 upon addition of increasing amounts of Cu²⁺ (inset: emission values measured at 358 nm *versus* [Cu²⁺]/[L2] molar ratio, [L2] = $1.99 \cdot 10^{-5}$ M, 25°C, $\lambda_{ex} = 323$ nm).

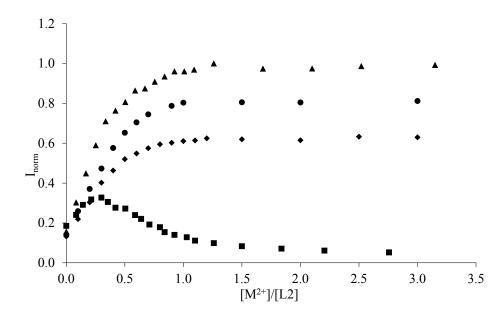


Figure S18. Normalized fluorescent intensity versus molar ratio plot for ligand L2 upon addition of increasing amounts of Cd²⁺ (\blacktriangle), Zn²⁺ (\bullet), Pb²⁺ (\bullet) and Cu²⁺ (\blacksquare) ions ([L2] = 1.99 \cdot 10^{-5} M, MeCN/H₂O 4:1 v/v, 25 °C, λ_{ex} = 323, λ_{em} = 358 nm).

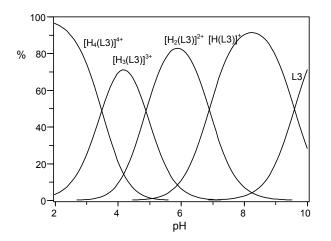
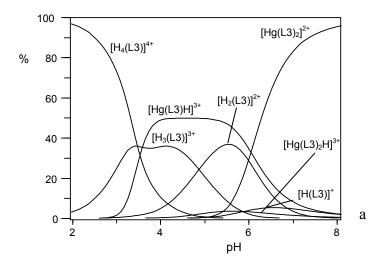
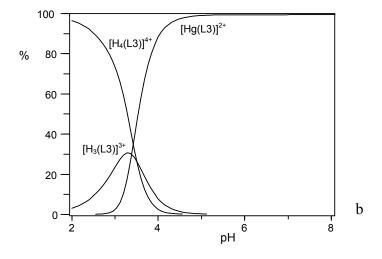




Figure S19. Distribution diagram of the protonated species of L3 ([L3] = 0.001 M, I = 0.1 M, 25 °C)

·

Figure S20. Distribution diagrams of the species formed by Hg^{2+} with L3 in metal to ligand molar ratio 1:2 a) and 1:1 b) ([L3] = 0.001 M, I = 0.1 M, 25°C).

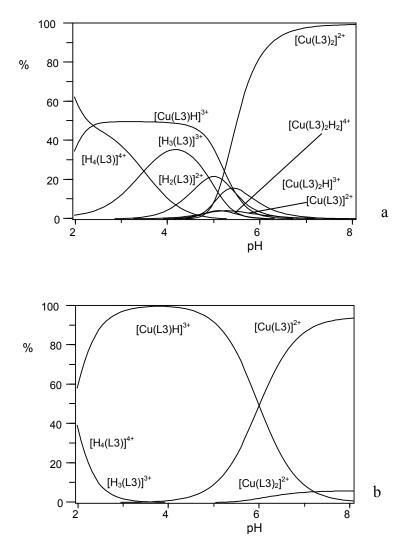


Figure S21. Distribution diagrams of the species formed by Cu^{2+} with L3 in metal to ligand molar ratio 1:2 a) and 1:1 b) ([L3] = 0.001 M, I = 0.1 M, 25°C).

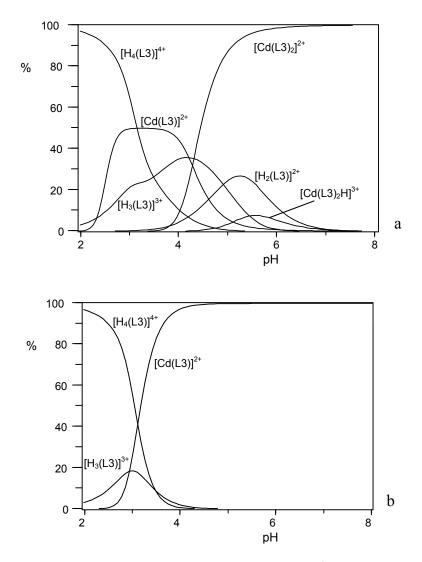
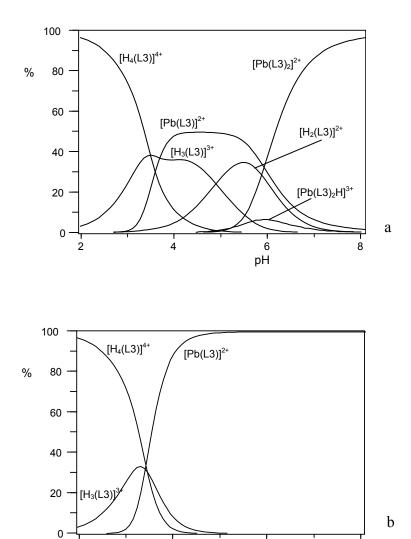



Figure S22. Distribution diagrams of the species formed by Cd^{2+} with L3 in metal to ligand molar ratio 1:2 a) and 1:1 b) ([L3] = 0.001 M, I = 0.1 M, 25°C).

M, I = 0.1 M, 25°C).

2 4 6 8 pH Figure S23. Distribution diagrams of the species formed by Pb²⁺ with L3 in metal to ligand molar ratio 1:2 a) and 1:1 b) ([L3] = 0.001

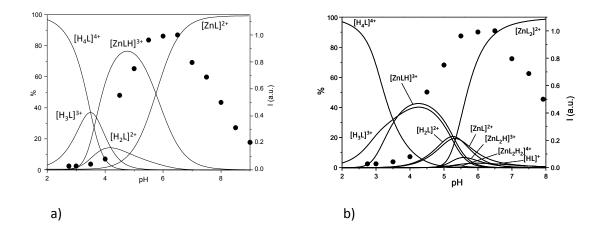


Figure S24. Superimposition of the fluorescence emission intensity at 505 nm (right, y axis) with the distribution diagrams of the species formed by L3 in the presence of Zn^{2+} in a) 1:1 e b) 2:1 molar ratio (left, y axis, [L3] = 1.95 x 10⁻⁵ M). The decrease of the emission intensity above pH 7 can be ascribed to the formation of minor percentages of scarcely emissive hydroxo complexes.

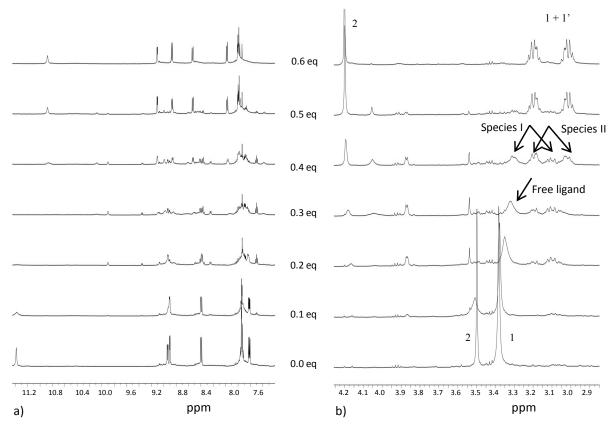


Figure S25. a) High and b) low frequency regions of the ¹H-NMR spectra of L3 in the presence of different amounts of Zn²⁺. For the numbering scheme see Table 2.

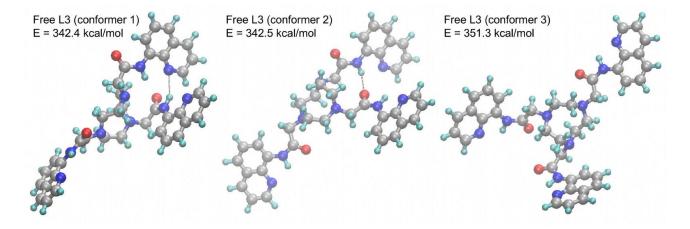


Figure S26. The three conformers with the lowest potential energy are shown (balls-and-sticks style) for L3 in the absence of any metal ion. The corresponding energy is reported in kcal/mol. Atoms are colour coded as: C (grey), H (cyan), N (blue) and O (red). Hydrogen-bonds are shown with dotted lines.

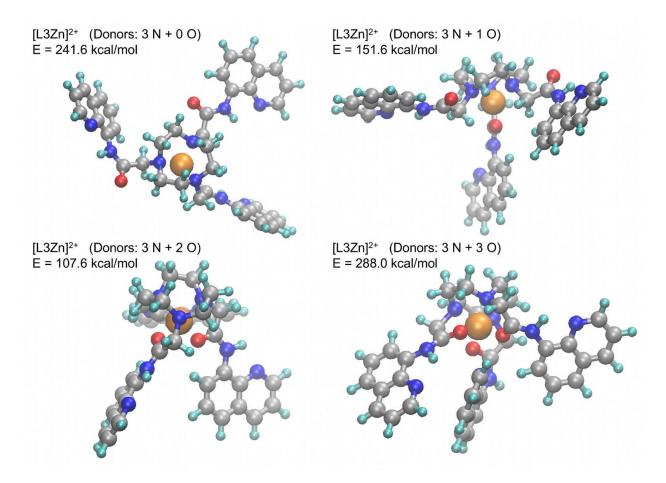


Figure S27. The lowest energy conformer is shown (balls-and-sticks style) for L3 in the presence of Zn^{2+} . A different number of donors was considered in each case: 3 N (top-left), 3 N + 1 O (top-right), 3 N + 2 O (bottom-left) and 3 N + 3 O (bottom-right). The corresponding energy is reported in kcal/mol. Atoms are colour coded as: C (grey), H (cyan), N (blue) and O (red).

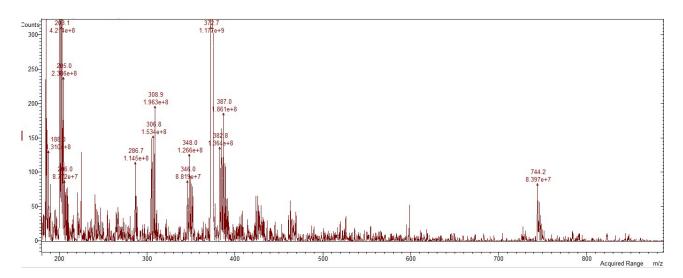


Figure S28. ESI-MS spectrum of a solution of L3 and Zn^{2+} at molar ratio $Zn^{2+}/L3$ of 1.0 ([L3] = 0.001 M, MeCN/CHCl₃ 70:30 (v/v)).

Figure S29. a) Low and b) high frequency regions of the ¹H-NMR spectra of L3 at different pH values in $CD_3CN:D_2O$ 1:1 v/v (signals labelled with an asterisk can be attributed to the protonated [ZnL3H]³⁺ complex).

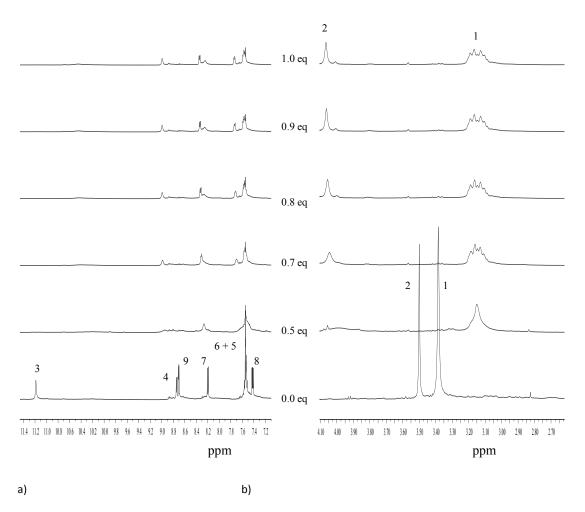


Figure S30. a) Low and b) high frequency regions of the ¹H-NMR spectra of L3 in the presence of different amounts of Hg²⁺. For the numbering scheme see Table 2.

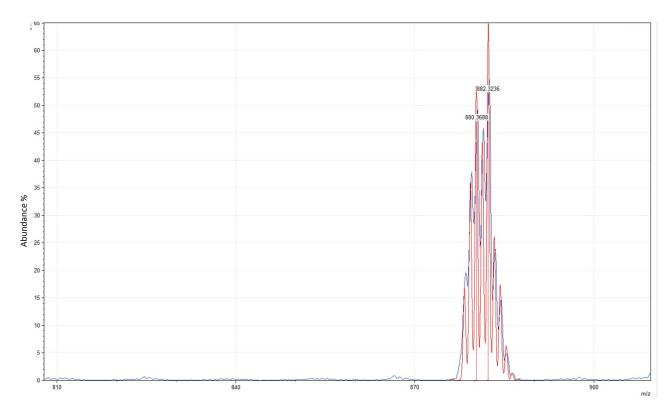


Figure S31. ESI-MS spectrum at molar ratio $Hg^{2+}/L3$ of 1.0 ([L3]= 0.001 M, MeCN/CHCl₃ 70:30 (v/v)).

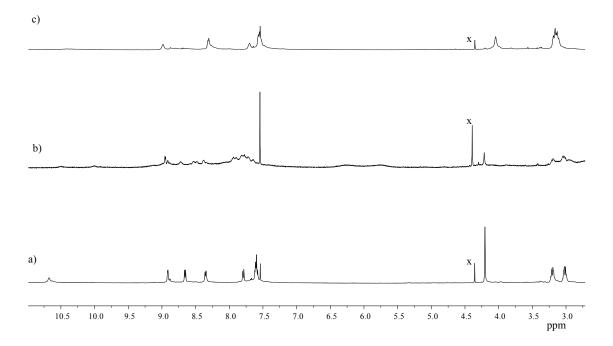


Figure S32. ¹H-NMR spectra of a) solution of L3 and Zn^{2+} at molar ratio $Zn^{2+}/L3$ of 1.0, b) solution of L3 and Zn^{2+} in 1:1 molar ratio and addition of 1 equiv. of Hg^{2+} and c) solution of L3 and Hg^{2+} at molar ratio $Hg^{2+}/L3$ of 1.0. (X = impurities).

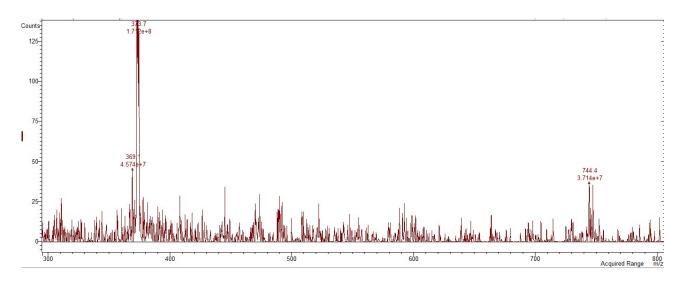


Figure S33. ESI-MS spectrum of a solution of L3 and Zn^{2+} in 1:1 molar ratio and addition of 1 equiv. of Hg²⁺ ([L3]= 0.001 M, MeCN/CHCl₃ 70:30 (v/v)).

Table S2. Summary of the basic crystallographic parameters for [ZnL1(Ac)](Ac) (1), $[CuL1(Cl)](Cl) \cdot H_2O$ (2) and $[CuL3](NO_3)$ (3)

	1	2	3
Empirical formula	C ₃₅ H ₄₈ N ₉ O ₅ Zn, C ₂ H ₃ O ₂	C ₃₃ H ₄₆ Cl ₂ CuN ₉ O _{3.5}	C ₃₉ H ₃₈ CuN ₁₀ O ₆
Formula weight	799.24	759.23	806.34
Crystal system	triclinic	triclinic	orthorhombic
Space group	P-1	P-1	Pbca
a /Å	10.757(4)	10.2504(4)	16.8909(3)
b /Å	11.917(4)	12.2470(5)	10.8298(3)
c /Å	14.635(5)	15.0718(6)	39.2281(14)
α/ º	88.72(3)	73.311(4)	90
β/≌	85.72(3)	76.050(3)	90
γ/º	87.84(3)	88.129(3)	90
V /Å ³	1869.2(11)	1757.55(12)	7175.8(4)
Т/К	295(2)	150(2)	120(2)
Z	2	2	8
Reflections collected	19785	16826	30968
Independent reflections	7511[<i>R_{int}</i> = 0.023]	$6826[R_{int} = 0.027]$	7048 [<i>R_{int}</i> = 0.0460]
Absorption correction	multi-scan	analytical	gaussian
Max. / min. transmission	1.000 / 0.764	0.924 / 0.662	0.786 / 0.896
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F ²	squares on F ²
Data / restraints / parameters	7511 / 147 / 460	6826 / 0 / 442	7048 / 507 / 505
Goodness-of-fit on F ²	1.087	1.04	1.188
Final R indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0375,	R1 = 0.0373,	R1 = 0.0981,
	wR2 = 0.1039	wR2 = 0.0943	wR2 = 0.2177
R indices (all data)	R1 = 0.0483,	R1 = 0.0463,	R1 = 0.1031,
	wR2 = 0.1065	wR2 = 0.101	wR2 = 0.2196

(3).	1	2	3
M1-N1	2.0983(18)	2.2200(18)	1.928(5)
M1-N2	2.0003(10)	2.2200(10)	2.057(5)
M1-N3			2.081(5)
M1-N4	2.2318(19)	2.019(17)	2.044(5)
M1-N7	2.1048(19)	2.1159(18)	2.353(5)
M1-N7 M1-N41	2.1048(15)	2.1139(18)	2.333(3)
M1-01	2.1473(17)	2.1080(18)	2.609(5)
M1-01 M1-03S	2.1475(17)		2.609(5)
M1-035 M1-04S			
	2.0889(18)	2,2200(5)	
M1-Cl1		2.2290(5)	
N1-M1-N2			82.7(2)
N1-M1-N3			165.7(2)
N1-M1-N4	82.24(7)	85.42(7)	81.8(2)
N1-M1-N7	85.23(7)	84.08(7)	100.6(2)
N1-M1-N41		106.37(7)	
N2-M1-N4			164.5(2)
N2-M1-N3			85.3(2)
N2-M1-N7			82.67(19)
N3-M1-N4			110.30(2)
N3-M1-N7			80.99(18)
N4-M1-N7	81.93(7)	85.12(7)	99.21(18)
N4-M1-N41		83.42(7)	
N7-M1-N41		163.76(7)	
N1-M1-O1	93.39(7)		106.5(2)
N1-M1-O3S	166.53(7)		
N1-M1-O4S	106.23(7)		
N2-M1-O1			96.2(2)
N3-M1-O1			71.6(2)
N4-M1-O1	169.60(6)		89.1(2)
N4-M1-O3S	95.19(7)		
N4-M1-O4S	98.92(7)		
N7-M1-O1	88.32(7)		152.5(2)
N7-M1-O3S	107.57(7)		
N7-M1-O4S	168.53(7)		
01-M1-03S	91.18(7)		
01-M1-04S	91.36(7)		
O3S-M1-O4S	60.97(7)		
N1-M1-Cl1		104.48(5)	
N4-M1-Cl1		167.98(7)	
N7-M1-Cl1		94.31(5)	
N41-M1-Cl1		94.99(5)	