## **Supporting Information**

#### 1. Experimental Section

#### 1.1 Physical characterization

X-ray diffraction (XRD) pattern were recorded to analyze the phase and crystal structure of the as-synthesized samples using a Shimadzu XRD-6100 operating in a 6 ° step at the range of 20-80 ° and using CuK $\alpha$  radiation ( $\lambda = 0.15405$  nm). X-ray photoelectron spectroscopy (XPS) was performed on a Thermo VG Scientific Escalab 250 spectrometer with a monochromatic Al K $\alpha$  excitation source. Scanning electron microscopy (SEM) images were obtained on an XL-30 (FEI COMPANY) equipped with an EDS spectrometer. The samples were examined with a Philips Tecnai G2 F20 High Resolution Transmission Electron Microscope (HRTEM) to obtain size/shape images of the nanostructured material. The magnetic properties of the synthesized samples were characterized using a vibrating sample magnetometer (VSM, Lake Shore 7404). The hysteresis curve was obtained by changing the magnetic field between + 17000 Oe and -17000 Oe.

#### **1.2 Electrochemical characterization**

Hydrogen Evolution Reaction (HER). All electrolysis measurements were performed in an N<sub>2</sub> saturated 1 M KOH solution in a CHI 650C electrochemical workstation. Typically, a mixture containing 735  $\mu$ L of ultrapure water, 245  $\mu$ L of ethanol and 20  $\mu$ L of Nafion solution, 4 mg of catalyst and 1 mg of acetylene black was dispersed by sonication for 30 minutes. Then 10  $\mu$ L of the homogeneous catalyst ink was dropped on a polished glassy carbon electrode having a diameter of 3 mm (0.57 mg·cm<sup>-2</sup>) as a working electrode. Ni foil was used as a counter electrode and Hg/Hg<sub>2</sub>Cl<sub>2</sub> electrode was used as a reference electrode. Linear sweep voltammetry was performed at a scan rate of 5 mV·s<sup>-1</sup> to obtain a polarization curve. All potentials were referenced to a reversible hydrogen electrode (RHE) by adding a value of (0.24+0.059×pH) V.

Electrochemically active surface area (EASA).<sup>[1]</sup> EASA was estimated from the electrochemical double-layer capacitance. The double layer capacitance ( $C_{dl}$ ) was determined with a simple cyclic voltammetry (CV) method. The EASA is then calculated from the double-layer capacitance according to

$$EASA = \frac{C_{dl}}{C_s}$$

where  $C_s$  is the capacitance of an atomically smooth planar surface of the material per unit area under identical electrolyte conditions. An average value of  $C_s = 22 \,\mu\text{F} \cdot \text{cm}^{-2}$  is used in this work.<sup>[2]</sup>

# 2. Supporting figures and tables



Fig. S1 SEM of iron oxalate dihydrate without PVP.



Fig. S2 Single particle magnification image of Fe<sub>3</sub>C-620@NC materials.



Fig. S3 (A) XPS full spectrum of Fe<sub>3</sub>C-620@NC materials and corresponding high-resolution spectrum of the (B) Fe 2p.



Fig. S4 XRD pattern of N-doped carbon (NC) by soaking Fe\_5C\_2-Fe\_3C@NC catalyst in 0.5 M  $H_2SO_4$ .



Fig. S5 CV curves of as-prepared ICs@NC catalysts under the potential window without faradaic

processes.

| Sample                             | C (at%) | N (at%) | Fe (at%) | O (at%) |
|------------------------------------|---------|---------|----------|---------|
| Fe <sub>5</sub> C <sub>2</sub> @NC | 80.26   | 3.27    | 0.6      | 15.87   |
| Fe <sub>3</sub> C-620@NC           | 79.96   | 5.27    | 0.53     | 14.24   |

Table S1 Content of elements on the surface of materials from the XPS analysis.

| Sample                             | $M_{\rm S}$ (emu·g <sup>-1</sup> ) | $M_{\rm r}$ (emu·g <sup>-1</sup> ) | $H_{\rm C}\left({\rm Oe}\right)$ |
|------------------------------------|------------------------------------|------------------------------------|----------------------------------|
| Fe <sub>3</sub> O <sub>4</sub> @NC | 20.76                              | 0.85                               | 33.33                            |
| Fe <sub>5</sub> C <sub>2</sub> @NC | 119.29                             | 15.92                              | 266.85                           |
| Fe <sub>3</sub> C-560@NC           | 132.04                             | 14.03                              | 254.11                           |
| Fe <sub>3</sub> C-620@NC           | 134.10                             | 13.20                              | 244.08                           |

Table S2 Magnetism data of as-prepared samples.

### References

 [1] Fan X, Peng Z, Ye R, et al. M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions[J]. ACS nano. 2015, 9(7): 7407.

[2] McCrory C C L, Jung S, Peters J C, et al. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction[J]. Journal of the American Chemical Society. 2013, 135(45): 16977-16987.