Electronic Supplementary Information (ESI)

Oxygen-bridged triarylamine polycyclic unit based tris-cyclometalated heteroleptic iridium(III) complex: correlation between structure and photophysical property

Qiuxia Li,^a Xinghua Zhang,^b Yibo Cao,^b Chao Shi,*^{a b} Peng Tao,^c Qiang Zhao^{*c} and Aihua Yuan^{*a b}

Correspondence and requests for materials should be addressed to C.S. (shichao@just.edu.cn) A.H.Y. (aihua.yuan@just.edu.cn) Q.Z. or or (iamqzhao@njupt.edu.cn)

Contents:

General information	S2
X-ray crystal structure analysis	S2
Electrochemical determination	S5
DFT calculation	S6
NMR spectra	S8
References	S15

General information

Unless noted, all reagents or solvents were obtained from commercial suppliers and used without further purification. All air sensitive experiments were performed in N₂ atmosphere through schlenck technology. Intermediate **1-a** was synthesized according to literature procesures¹. The ¹H and ¹³C NMR spectra were measured by using a Bruker 500 MHz spectrometer at room temperature. Mass spectra were conducted at Micromass Q-Tof instrument (ESI) and Agilent Technologies 5973N (EI). A Hitachi F-4600 fluorescence spectrophotometer was used to measure phosphorescence spectral. An Edinburgh FLS-920 spectrometer was used to determine phosphorescence quantum efficiency and lifetimes of the molecules in solution.

X-ray crystal structure analysis

Single-crystals of **Ir-NO** and **Ir-O** were both obtained by slow diffusion of ethanol to their CH_2CI_2 solutions, respectively. The X-ray diffraction data were collected on a Bruker Smart CCD Apex DUO diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) using the ω -2 θ scan mode. Both crystal data are deposited in The Cambridge Crystallographic Data Centre (CCDC: 1864843 for **Ir-NO** and 1864844 for **Ir-O**).

Table S1. Crystallographic Data for Ir-NO and Ir-O.

Complex	Ir-NO	Ir-O	
chemical formula	$4(C_{45}H_{29}IrN_4O_2)$ ·2H ₂ O	$C_{45}H_{32}IrN_3O_2$	
formula weight	3435.71	838.96	
crystal size (mm)	0.22 ×0.24 × 0.26	0.23 × 0.27 × 0.28	
temperature (K)	291	296	

radiation	0.71073	0.71073	
crystal system	Monoclinic	Tetragonal	
space group	C2/c	I-4	
a(Å)	37.650(3)	27.492(3)	
b(Å)	9.272(2)	27.492(3)	
<i>c</i> (Å)	20.135(3)	9.296(3)	
α(°)	90	90	
β(°)	96.852	90	
γ(°)	90	90	
V(Å ³)	6978.7(19)	7026(3)	
Z	2	8	
$\rho(_{calc})$ (g/cm ³)	1.635	1.586	
F (000)	3400	3328	
absorp.coeff. (mm ⁻¹)	3.874	3.844	
θ range (deg)	1.1 to 25.0	1.0 to 26.0	
refins collected	24457(R _{int} = 0.074)	49759 (R _{int} = 0.110)	
indep. reflns	5890	6913	
Refns obs.[$l > 2\sigma(l)$]	4553	5550	
data/restr/paras	5890/0/475	6913/0/460	
GOF	1.04	1.07	
R ₁ /wR ₂ [<i>l</i> >2σ(<i>l</i>)]	0.0389/0.0867	0.0545/0.1231	
R_1/wR_2 (all data)	0.0603/0.0924	0.0758/0.1310	
larg peak and hole(e/Å ³)	1.89/-1.24	1.29/-1.35	

Fig. S1. Crystal and packing structure of **Ir-NO**, the hydrogen atoms have been omitted for clarity, selected bond lengths (Å) and angles (°): Ir1–N1 2.118(4), Ir1–N3 2.143(5), Ir1–N4 2.115(5), Ir1–C11 2.040(6), Ir1–C34 2.009(6), Ir1–C45 2.003(6); N1–Ir1–C11 79.4(2), N1–Ir1–N4 94.28(18), N1–Ir1–N3 93.93(17), N1–Ir1–C34 174.0(2), N1–Ir1–C45 91.7(2), C11–Ir1–C34 100.6(2), C11–Ir1–C45 95.5(2), C34–Ir1–C45 94.3(3).

Fig. S2. Crystal and packing structure of **Ir-O**, the hydrogen atoms have been omitted for clarity, selected bond lengths (Å) and angles (°): Ir1–N1 2.135(8), Ir1–N3 2.138(9), Ir1–N2 2.122(11), Ir1–C11 2.041(12), Ir1–C33 2.003(11), Ir1–C18 2.000(11); N1–Ir1–C11 80.0(4), N1–Ir1–N3 91.6(3), N1–Ir1–N2 97.7(4), N1–Ir1–C18 176.9(4), N1–Ir1–C33 90.2(4), C11–Ir1–C18 176.9(4), C11–Ir1–C33 93.1(4), C18–Ir1–C33 92.7(4).

Electrochemical determination

Cyclic Volta metric experiments were carried out with an IM6ex (Zahner) using three electrode cell assemblies. All measurements were carried out in a one-compartment cell under Argon, equipped with a glassy-carbon working electrode, a platinum wire counter electrode, and a Ag/Ag⁺ reference electrode with a scan rate of 100 mV s⁻¹. The supporting electrolyte was a 0.10 mol L⁻¹ CH₂Cl₂ solution of tetrabutyl-ammonium hexafluorophosphate (Bu₄NPF₆). Each oxidation and reduction potential was calibrated with ferrocene as a reference.

Fig. S3. Cyclic voltammograms of all complexes (**Ir-NO**, **Ir-O** and **Ir-N**) and all free ligands (**L-1**, **L-2** and **L-3**) in degassed CH_2CI_2 solution (5*10⁻⁴ mol/L) with tetrabutyl-ammonium hexafluorophosphate (0.1 mol/L) as supporting electrolyte under the scan rate of 100 mV s⁻¹.

DFT calculation

DFT method was used to optimize the geometries all the complexes. The electronic transition energies and electron correlation effects were also calculated by (TD)-DFT method with the B3LYP functional (TD-B3LYP). The LANL2DZ basis set was used to treat with the iridium atom, and the 6–31G(d) basis set was used to treat with all other atoms. All calculations were carried out according to the Gaussian 09 program.²

Ir-N

Ir-NO

lr-O

Fig. S4. Calculated structure and dipole moment of excited state for Ir-N, Ir-NO and Ir-O.

Fig. S5. Comparison between calculated values and experimental values of Energy Levels of HOMO and LUMO.

Table S2. Calculated dipole moment of complexes in both ground state and excited state

Compounds	Dipole moment (ground state)	Dipole moment (excited state)	
	(D)	(D)	
Ir-NO	6.8178	4.0305	
Ir-N	8.1733	3.5851	
lr-O	6.0813	8.3904	

Table S3. Calculated energies and oscillator strengths for lowest-energy singlet (S1) and triplet (T1) transitions.

complexes	states	E (eV)	Oscillator strength	main configurations (CI coeff)	Character
ler Ni	S ₁	2.84	0.0596	HOMO→LUMO (0.56)	MLCT/ILCT/LLCT
11 - IN	T_1	2.01	0	HOMO→LUMO (0.65)	³ ILCT/ ³ MLCT
I = 0	S_1	2.80	0.0023	HOMO→LUMO (0.64)	MLCT/LLCT/ILCT
Ir-O	T_1	1.90	0	HOMO→LUMO (0.68)	³ ILCT/ ³ MLCT
Ir-NO	S_1	2.58	0.1442	HOMO→LUMO (0.66)	ILCT/LLCT
	T ₁	1.68	0	HOMO→LUMO (0.67)	³ ILCT

NMR spectra

Fig. S6. ¹H NMR and ¹³C NMR spectra of **1-b**.

¹H NMR (CDCl₃)

Fig. S7. ¹H NMR and ¹³C NMR spectra of L-1.

Fig. S8. ¹H NMR and ¹³C NMR spectra of L-2.

Fig. S9. ^1H NMR and ^{13}C NMR spectra of L-3.

Fig. S10. ¹H NMR and ¹³C NMR spectra of Ir-NO.

¹H NMR (CDCl₃)

Fig. S11. ¹H NMR and ¹³C NMR spectra of Ir-N.

Fig. S12. ¹H NMR and ¹³C NMR spectra of Ir-O.

References

- A. Wakamiya, H. Nishimura, T. Fukushima, F. Suzuki, A. Saeki, S. Seki, I. Osaka, T. Sasamori, M. Murata, Y. Murata, H. Kaji, *Angew. Chem. Int. Ed.* 2014, **53**, 5800.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.Bakken, C. Adamo, J. Jaram illo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, **2010**.