Electronic Supplementary Information

Synthesis and Characterization of Chromium Complexes 2-

Me₄CpC₆H₄CH₂(R)NHCrCl₂ and Their Catalytic Properties in Ethylene

Homo- and Co-polymerization

Tingting Song, Xin Tao, Xiaobo Tong, Ning Liu, Wei Gao, Xiaoyue Mu*, Ying Mu*

The State Key Laboratory for Supramolecular Structure and Materials, School of Chemistry, Jilin

University, 2699 Qianjin Street, Changchun 130012, People's Republic of China

Table of Contents

1.	Crystal Data and Structure Refinements of Complexes 1, 5 and 6	S2
2.	GPC traces for typical poly(ethylene-co-1-hexene) samples	S 3
3.	¹³ C NMR spectra for typical poly(ethylene-co-1-hexene) samples	S6
4.	UV/Vis spectra of complexes 1–6	S9
5.	NMR spectra of the ligands H_2 L3, H_2 L5, H_2 L6, and complexes 1–6	S12

	1	5	6
empirical formula	$C_{19}H_{25}Cl_2CrN$	C ₂₄ H ₂₇ Cl ₂ CrN	C ₂₆ H ₃₁ Cl ₂ CrN
M_w	390.30	452.37	480.42
crystal system	Monoclinic	Monoclinic	Orthorhombic
space group	C2/c	P2(1)/c	Pna2(1)
<i>a</i> (Å)	25.969(2)	10.4590(8)	15.3969(7)
<i>b</i> (Å)	9.2271(8)	26.893(2)	18.3161(9)
<i>c</i> (Å)	16.7645(14)	8.5983(6)	8.5618(4)
α (deg)	90	90	90
<i>в</i> (deg)	110.1890(10)	113.7230(10)	90
γ (deg)	90	90	90
V (Å)	3770.3(6)	2214.1(3)	2414.5(2)
Ζ	8	4	4
Dcalcd (mg m ⁻³)	1.375	1.357	1.322
abs. coeff. (mm ⁻¹)	0.889	0.768	0.708
2θ mas (deg)	1.67-26.39	2.13-26.39	1.73-26.39
transmission range	0.8782-0.8493	0.8936-0.8679	0.9012-0.8772
reflections collected	10485	12593	12947
independent reflections	3838 [<i>R</i> (int) = 0.0386]	4521 [<i>R</i> (int) = 0.0367]	4864 [<i>R</i> (int) = 0.0353]
$R_1^a (wR_2)^b [I > 2\sigma(I)]$	0.0452	0.0457	0.0455
	0.1077	0.1043	0.1128
GOF (F ²)	1.054	1.049	0.999
largest diff. peak	0.693	0.709	0.407
and hole/e Å ⁻³	-0.273	-0.265	-0.296

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \quad {}^{b}wR_{2} = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]\right]^{1/2}$

Figure S1 GPC trace for poly(ethylene-co-1-hexene) sample (entry 18, Table 3, $Mw = 6.48 \times 10^4$ g/mol, Mw/Mn = 2.68).

Figure S2 GPC trace for poly(ethylene-co-1-hexene) sample (entry 21, Table 3, $Mw = 8.20 \times 10^4$ g/mol, Mw/Mn = 2.62).

Figure S3 GPC trace for poly(ethylene-co-1-hexene) sample (entry 24, Table 3, $Mw = 12.22 \times 10^4$ g/mol, Mw/Mn = 2.08).

Figure S4 GPC trace for poly(ethylene-co-1-hexene) sample (entry 27, Table 3, $Mw = 13.18 \times 10^4$ g/mol, Mw/Mn = 2.47).

Figure S5 GPC trace for poly(ethylene-co-1-hexene) sample (entry 30, Table 3, $Mw = 16.02 \times 10^4$ g/mol, Mw/Mn = 2.45).

Figure S6 GPC trace for poly(ethylene-co-1-hexene) sample (entry 33, Table 3, $Mw = 20.31 \times 10^4$ g/mol, Mw/Mn = 2.48).

Figure S7 ¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 21, Table 3).

Figure S8 ¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 24, Table 3).

Figure S9 ¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 27, Table 3).

Figure S10¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 30, Table 3).

Figure S11 ¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 33, Table 3).

Figure S12 ¹³C NMR spectra for poly(ethylene-co-1-hexene) sample (entry 36, Table 3).

Figure S13 UV/Vis spectra of complex 1.

Figure S14 UV/Vis spectra of complex 2.

Figure S15 UV/Vis spectra of complex 3.

Figure S16 UV/Vis spectra of complex 4.

Figure S17 UV/Vis spectra of complex 5.

Figure S18 UV/Vis spectra of complex 6.

