Electronic Supporting Information

Highly selective $\mathrm{C}_{2} \mathrm{H}_{2}$ and CO_{2} capture and magnetic properties of robust Co-chain based metal-organic framework

Tao Ding ${ }^{\text {a,b, }}$, Sheng Zhang ${ }^{\text {c }}$, Weiqiang Zhang ${ }^{a}$, Guofang Zhang ${ }^{a}$, Zi-Wei Gao ${ }^{*}$ a
${ }^{a}$ Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry \& Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R China.E-mail: zwgao@snnu.edu.cn
${ }^{b}$ College of Environment and Chemistry Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R China.
${ }^{c}$ College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R China.

Scheme S1 The scheme for the synthesis of $H_{4} \mathrm{~L}$.

(1) 2,6-di(2',5'-dicarboxylphenyl)pyridine ($\mathbf{H}_{4} \mathrm{~L}$)

2,6-dibromopyridine ($2.37 \mathrm{~g}, 10.00 \mathrm{mmol}$), (2,5-bis(methoxycarbonyl)phenyl)boronic $\operatorname{acid}(5.24 \mathrm{~g}, 22.00 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.58 \mathrm{~g}, 0.50 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.64 \mathrm{~g}, 48.00$ mmol) were mixed in a 250 mL Schlenk flask. After vacuumized and refilled with N_{2} for three times, toluene-ethanol-water ($60 \mathrm{ml}, 30 \mathrm{ml}, 30 \mathrm{ml}$) was added. The mixture was stirred at $75^{\circ} \mathrm{C}$ for 18 h and then cooled to room temperature. After removing the organic phase under vacuum, dichloromethane $(150 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ were added. The organic phase was separated and then the aqueous phase was extracted three times with dichloromethane $(100 \times 3 \mathrm{~mL})$. The combined organic phases were washed with saturated brine, dried over anhydrous MgSO_{4}. After removing the organic solvent by rotary evaporation, the residue was purified by column chromatography with dichloromethane/ethyl acetate $(3 / 1, \mathrm{v} / \mathrm{v})$ as eluent to obtain white solid product (3.84 g , 83.0% yield). $3.84 \mathrm{~g}(8.30 \mathrm{mmol})$ of dimethyl tetramethyl 2,2'-(pyridine-2,6diyl)diterephthal ate was dissolved in THF (100 mL), and then 160 mL 2 M NaOH aqueous solution was added. The solut was stirred at $60^{\circ} \mathrm{C}$ for 6 h and the THF was removed in vacuum. Concentrated hydrochloric acid was added to the remaining aqueous solution until the solution became acidic ($\mathrm{pH}=2 \sim 3$). The solid was collected by filtration, washed several times with distilled water, and dried under vacuum to give white solid product ($3.09 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 500 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts were determined relative to internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}(\mathrm{TMS})$ at $\delta 0.00$ or to the signal of the residual protonated solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ $\delta 2.50 .{ }^{13} \mathrm{C}$ NMR chemical shifts were determined relative to internal TMS at $\delta 0.0$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.21(\mathrm{~s}, 4 \mathrm{H}), 8.17(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{dd}, J=1.5$,
$8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,166.9,157.0,140.4,137.6,137.2,133.2,131.1$, 129.8, 129.5, 122.3.

Fig. S1 The bridging mode of L^{4-} in $\mathbf{1}$.

Fig. S2 PXRD patterns for 1: simulated, as-synthesized, and desolved samples.

Fig. $\mathbf{S 3}$ TGA for 1: as-synthesized, EtOH-exchanged, and desolved samples.

Fig. S4 IR for 1: as-synthesized and desolved samples.

Fig. S5 The pore size distribution incremental pore volume vs. pore width

(a)

Fig. S6 $\mathrm{C}_{2} \mathrm{H}_{2}$ (a), CO_{2} (b), and CH_{4} (c) adsorption isotherms of 1a with fitting by L-F model.

(a)

(b)

Fig. S7 $\mathrm{C}_{2} \mathrm{H}_{2}\left(\right.$ a) and CO_{2} (b) adsorption isotherms for $\mathbf{1 a}$ with fitting by Virial 2 model.

Fig. S8 $\chi_{\mathrm{M}}{ }^{-1}$ versus T plots fit by the Curie - Weiss law.

Fig. S9 Coordination polyhedra of Co 1 and Co 2 cations, and details of tetrameric cluster.

Fig. S10 Linear fit by Arrhenius law for 1.

Table. S1 Selected bond lengths (\AA) and bond angles (deg) for $\mathbf{1}$.

$\mathrm{Co}(1)-\mathrm{O}(1)$	$2.168(6)$
$\mathrm{Co}(1)-\mathrm{O}(4) \# 2$	$2.069(8)$
$\mathrm{Co}(1)-\mathrm{O}(5) \# 3$	$2.147(8)$
$\mathrm{Co}(1)-\mathrm{O}(8) \# 2$	$2.124(6)$
$\mathrm{Co}(2)-\mathrm{O}(2) \# 5$	$2.100(7)$
$\mathrm{Co}(2)-\mathrm{O}(3)$	$2.079(7)$
$\mathrm{Co}(2)-\mathrm{O}(4)$	$2.108(5)$
$\mathrm{Co}(2)-\mathrm{O}(5)$	$2.095(6)$
$\mathrm{Co}(2)-\mathrm{O}(6)$	$2.201(8)$
$\mathrm{Co}(2)-\mathrm{O}(7)$	$2.164(8)$
$\mathrm{O}(1) \# 1-\mathrm{Co}(1)-\mathrm{O}(1)$	$89.1(3)$
$\mathrm{O}(4) \# 2-\mathrm{Co}(1)-\mathrm{O}(1)$	$84.8(2)$
$\mathrm{O}(4) \# 2-\mathrm{Co}(1)-\mathrm{O}(5) \# 3$	$179.3(4)$
$\mathrm{O}(4) \# 2-\mathrm{Co}(1)-\mathrm{O}(8) \# 4$	$95.4(2)$
$\mathrm{O}(5) \# 3-\mathrm{Co}(1)-\mathrm{O}(1)$	$95.6(3)$
$\mathrm{O}(8) \# 2-\mathrm{Co}(1)-\mathrm{O}(1)$	$179.7(4)$
$\mathrm{O}(8) \# 4-\mathrm{Co}(1)-\mathrm{O}(1)$	$90.73(18)$
$\mathrm{O}(8) \# 4-\mathrm{Co}(1)-\mathrm{O}(1) \# 1$	$179.7(4)$
$\mathrm{O}(8) \# 4-\mathrm{Co}(1)-\mathrm{O}(5) \# 3$	$84.1(3)$
$\mathrm{O}(8) \# 4-\mathrm{Co}(1)-\mathrm{O}(8) \# 2$	$89.4(4)$
$\mathrm{O}(2) \# 5-\mathrm{Co}(2)-\mathrm{O}(4)$	$96.0(3)$
$\mathrm{O}(2) \# 5-\mathrm{Co}(2)-\mathrm{O}(6)$	$89.6(4)$

$\mathrm{O}(2) \# 5-\mathrm{Co}(2)-\mathrm{O}(7)$	$84.4(4)$
$\mathrm{O}(3)-\mathrm{Co}(2)-\mathrm{O}(2) \# 5$	$169.0(2)$
$\mathrm{O}(3)-\mathrm{Co}(2)-\mathrm{O}(4)$	$92.6(3)$
$\mathrm{O}(3)-\mathrm{Co}(2)-\mathrm{O}(5)$	$92.5(3)$
$\mathrm{O}(3)-\mathrm{Co}(2)-\mathrm{O}(6)$	$82.0(3)$
$\mathrm{O}(3)-\mathrm{Co}(2)-\mathrm{O}(7)$	$88.6(3)$
$\mathrm{O}(4)-\mathrm{Co}(2)-\mathrm{O}(6)$	$174.2(3)$
$\mathrm{O}(4)-\mathrm{Co}(2)-\mathrm{O}(7)$	$91.0(3)$
$\mathrm{O}(5)-\mathrm{Co}(2)-\mathrm{O}(2) \# 5$	$94.8(3)$
$\mathrm{O}(5)-\mathrm{Co}(2)-\mathrm{O}(4)$	$86.91(16)$
$\mathrm{O}(5)-\mathrm{Co}(2)-\mathrm{O}(6)$	$91.1(3)$
$\mathrm{O}(5)-\mathrm{Co}(2)-\mathrm{O}(7)$	$177.7(3)$
$\mathrm{O}(7)-\mathrm{Co}(2)-\mathrm{O}(6)$	$91.0(2)$

Symmetry transformations used to generate equivalent atoms:
$\# 1 \mathrm{x},-\mathrm{y}+1, \mathrm{z} \quad \# 2 \mathrm{x}-1 / 2, \mathrm{y}+1 / 2, \mathrm{z} \quad \# 3 \mathrm{x}-1 / 2, \mathrm{y}+1 / 2, \mathrm{z}-1$
$\# 4 \mathrm{x}-1 / 2,-\mathrm{y}+1 / 2, \mathrm{z} \quad \# 5 \mathrm{x}+1 / 2,-\mathrm{y}+1 / 2, \mathrm{z}+1$

