Supporting Information

Hierarchical porous MnCo₂O₄ yolk-shell microspheres from MOFs as secondary nanomaterials for high power lithium ion batteries

Hongxun Yang^{a, b,*}, Yue Xie^{a, c}, Miaomiao Zhu^a, Yongmin Liu^a, Zhenkang Wang^a, Minghang Xu^a, and Shengling Lin^a

^aSchool of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China, ^bMarine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China, ^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, China

*Corresponding author: E-mail address: <u>yhongxun@126.com</u> (Hongxun Yang)

Fig. S1 SEM images of MnCo-MOF precursor.

Fig. S2 XRD patterns of MnCo-MOF precursor.

Fig. S3. (a) XPS survey scan of $MnCo_2O_4$ microspheres. (b) XPS of O1s. (c) XPS of the Co2p. (d) XPS of Mn2p.

Fig. S4 SEM images of porous MnCo₂O₄ yolk-shell microspheres at low magnification.

Figure S5. EDS spectrum of the hierarchical porous $MnCo_2O_4$ yolk-shell microspheres.

Figure S6. SEM images of the hierarchical porous $MnCo_2O_4$ yolk-shell microspheres after 70th cycle at 0.1 C.

Materials	Capacity (mAhg ⁻¹)	Current density (mA g ⁻¹)	Cycle number	Refs
MnCo2O4 yolk-shell microspheres	998.4	100	50	This work
	910.1	100	70	This work
	691.3	1000	500	This work
MnCo ₂ O ₄ nanowires	800	200	50	14
MnCo2O4 hollow nanofibers	997	100	50	15
$CoMn_2O_4$ hollow microcubes	624	200	50	18
MnCo ₂ O ₄ power 1-2 um	863	60	45	20
MnCo ₂ O ₄ microspheres	722	200	25	21
MnCo ₂ O ₄ submicrospheres	670	400	100	23
MnCo ₂ O ₄ /graphene	584.3	2000	250	24
Porous MnCo ₂ O ₄	690.1	500	100	25
MnCo2O4 nanoparticles	431.1	500	100	25
Porous MnCo ₂ O ₄	226.2	1000	100	25
MnCo ₂ O ₄ microellipses	616.7	400	50	26
hierarchical MnCo2O4 nanosheets	460	800	30	28
MnCo2O4 quasi-hollow microspheres	610	400	100	29
	755	200	25	29
MnCo ₂ O _{4.5}	413	300	100	45
MnCo ₂ O ₄ microspheres	894	100	65	47
CoMn ₂ O ₄ powders	515	69	50	47

Table S1. Comparison of the cycling performance of $MnCo_2O_4$ between our work and previous reports.

[14] S. G. Mohamed, T. F. Hung, C. J. Chen, C. K. Chen, S. F. Hu and R. S. Liu, RSC Adv., 2014, 4, 17230-17235.

[15] S. M. Hwang, S. Y. Kim, J. G. Kim, K. J. Kim, J. W. Lee, M. S. Park, Y. J. Kim,M. Shahabuddin, Y. Yamauchif and J. H. Kim, *Nanoscale*, 2015, 7, 8351-8355.

[18] L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Matetr. 2012, 6, 745-748.

[20] G. D. Li, L. Xu, Y. Zhai and Y. P. Hou, J. Mater. Chem. A, 2015, 3, 14298-14306.

[21] C.C. Fu, G.S. Li, D. Luo, X.S. Huang, J. Zheng, L.P. Li, One-Step Calcination-Free Synthesis of Multicomponent Spinel Assembled Microspheres for High-Performance Anodes of Li-Ion Batteries: A Case Study of MnCo₂O₄, *ACS Appl. Mater. Interfaces*, 2014, 6, 2439.

[23] J. F. Li, J. Z. Wang, X. Liang, Z. J. Zhang, H. K. Liu and Y. T. Qian, ACS Appl. Mater. Interfaces, 2014, 6, 24-30.

[24] C. Chen, B. R. Liu, Q. Ru, S. M. Ma, B. N. An, X. H. Hou and S. J. Hu, *J. Power Sources* 2016, **326**, 252-263.

[25] D. S. Baji, H. S. Jadhav, S. V. Nair and A. K. Rai, J. Solid State Chem. 2018, 262, 191-198.

[26] X. Y. Wu, S. M. Li, B. Wang, J. H. Liu and M. Yu, New J. Chem., 2015, 39, 8416-8423.

[28] F. M. Courtel, H. Duncan, Y. Abu-Lebdeh, I. J. Davidson, J. Mater. Chem. 2012, 21, 10206-10218.

[28] L. Yu, L. Zhang, H. B. Wu, G. Q. Zhang and X. W. Lou, *Energy Environ. Sci.*, 2013, 6, 2664-2671.

[29] J. F. Li, S. L. Xiong, X. W. Li and Y. T. Qian, *Nanoscale*, 2013, 5, 2045-2054.
[45] X. D. Hu, S. M. Zhang, X. Li, X. H. Sun, S. Cai, H. M. Ji, F. Hou, C. M. Zheng and W. B. Hu, *J. Mater. Sci.*, 2017, 52, 5268-5282.
[47] L. Hu, H. Zhong, X. R. Zheng, Y. M. Huang, P. Zhang and Q. W. Chen, *Sci.*

Reports, 2012, 986, 1-8.