## Electronic Supplementary Information (ESI)

## Effective loading of cisplatin into a nanoscale UiO-66 metal-organic

## framework with preformed defects<sup>+</sup>

Shi-Xin Lin,<sup>a</sup> Wei-Lun Pan,<sup>b</sup> Ru-Jie Niu,<sup>a</sup> Yan-Liu,<sup>a</sup> Jin-Xiang Chen,<sup>\*b</sup> Wen-Hua Zhang,<sup>\*a</sup>

Jian-Ping Lang\*<sup>a</sup> and David J. Young<sup>c</sup>

<sup>a</sup> College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou

215123, China. Email: whzhang@suda.edu.cn; jplang@suda.edu.cn

<sup>b</sup> Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,

Southern Medical University, Guangzhou 510515, China. Email: jxchen@smu.edu.cn

<sup>c</sup> College of Engineering, Information Technology & Environment, Charles Darwin University, Darwin,

Northern Territory 0810, Australia

## Contents

| Scheme S1 Synthetic strategies and for loading cisplatin into UiO-66. The second strategy was                   |
|-----------------------------------------------------------------------------------------------------------------|
| halted because of difficulties encountered in preparing the cisplatin precursor2                                |
| Fig. S1 TGA curves of UiO-66-350 (black) and UiO-66-TFA (red)3                                                  |
| Fig. S2 FT-IR spectra of UiO-66-350-PA (red) and UiO-66-350-PA-Pt (blue)                                        |
| Fig. S3 EDX spectrum of UiO-66-350-PA-Pt                                                                        |
| Fig. S4 UV-Vis spectra for release of cisplatin at different times4                                             |
| Fig. S5 Agarose GE patterns for P-DNA loading into UiO-66-350-PA-Pt. Lane 1-7 DNA (50 nM) with                  |
| UiO-66-350-PA-Pt at the concentrations of 5.4, 10.8, 27.0, 54.0, 162.0, 324.0 and 486.0 $\mu\text{M},$          |
| respectively, Lane 8: DNA marker4                                                                               |
| Table S1 The ICP analysis show the concentration of the elements in UiO-66-350-PA-Pt (the ratio                 |
| of Zr : Pt : P is 9 : 1 : 1 corresponding to the Zr <sub>6</sub> : Pt : P being 1.5 : 1 : 1)5                   |
| Table S2 BET surface area (SBET) and total pore volume (Vp) of UiO-66-TFA, UiO-66-350, UiO-66-350-              |
| PA and UiO-66-350-PA-Pt5                                                                                        |
| <b>Table S3</b> The ICP analysis showing the concentration of platinum at intervals after release. $C_1$ is the |
| concentration after dilution of C <sub>2</sub> (the actual concentration) by 25 times5                          |



**Scheme S1** Synthetic strategies and for loading cisplatin into UiO-66. The second strategy was halted because of difficulties encountered in preparing the cisplatin precursor.



Fig. S1 TGA curves of UiO-66-350 (black) and UiO-66-TFA (red).



Fig. S2 FT-IR spectra of UiO-66-350-PA (red) and UiO-66-350-PA-Pt (blue).



Fig. S3 EDX spectrum of UiO-66-350-PA-Pt.



Fig. S4 UV-Vis spectra for release of cisplatin at different times.



Fig. S5 Agarose GE patterns for P-DNA loading into UiO-66-350-PA-Pt. Lane 1-7 DNA ( 50 nM) with UiO-66-350-PA-Pt at the concentrations of 5.4, 10.8, 27.0, 54.0, 162.0, 324.0 and 486.0  $\mu$ M, respectively, Lane 8: DNA marker.

 Element
 Cv (mg/L)
 Cd (mmol/L)

 Zr
 95.12
 1.04

 Pt
 21.88
 0.11

 P
 3.490
 0.11

**Table S1** The ICP analysis show the concentration of the elements in UiO-66-350-PA-Pt (the ratio of Zr : Pt : P is 9 : 1 : 1 corresponding to the  $Zr_6 : Pt : P$  being 1.5 : 1 : 1).

**Table S2** BET surface area ( $S_{BET}$ ) and total pore volume ( $V_p$ ) of UiO-66-TFA, UiO-66-350, UiO-66-350-PA and UiO-66-350-PA-Pt.

| Samples          | S <sub>BET</sub> (m <sup>2</sup> g <sup>-1</sup> ) | V <sub>P</sub> (cm³g⁻¹) |
|------------------|----------------------------------------------------|-------------------------|
| UiO-66-TFA       | 1368                                               | 0.6246                  |
| UiO-66-350       | 1000                                               | 0.5433                  |
| UiO-66-350-PA    | 746                                                | 0.4460                  |
| UiO-66-350-PA-Pt | 552                                                | 0.4044                  |

**Table S3** The ICP analysis showing the concentration of platinum at intervals after release.  $C_1$  is theconcentration after dilution of  $C_2$  (the actual concentration) by 25 times.

| Samples | C1 (mg/L) | C <sub>2</sub> (mg/L) |
|---------|-----------|-----------------------|
| 1h      | 2.99      | 74.75                 |
| 2h      | 3.64      | 91.00                 |
| 4h      | 3.73      | 93.25                 |
| 6h      | 3.84      | 96.00                 |
| 8h      | 3.91      | 97.75                 |
| 10h     | 4.14      | 106.00                |
| 240h    | 4.38      | 109.50                |