Electronic Supporting Information

for the manuscript entitled

Oxo-bridged Trinuclear and Tetranuclear Manganese Complexes Supported with Nitrogen Donor Ligands: Syntheses, Structures and Properties

Deepak Bansal,¹ Abhishake Mondal,² N. Lakshminarasimhan³ and Rajeev Gupta^{1,*}

¹Department of Chemistry, University of Delhi, Delhi 110 007, India
²Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore – 560 012, Karnataka, India
³Functional Materials Division, CSIR-Central Electrochemical Research Institute (CECRI)
Karaikudi – 630 003, Tamil Nadu, India & Academy of Scientific and Innovative Research, CSIR-CECRI Campus, Karaikudi – 630 003, Tamil Nadu, India

Figure S1. FTIR spectra of complexes 1–3.

Figure S2. Absorption spectra of (a) ligands $H_2L^1-H_2L^3$ and (b) complexes 1–3.

Figure S3. Thermogravimetric analysis (TGA) plots for complexes 1–3.

Figure S4. Thermal ellipsoidal representation, drawn at 30% probability level, of complex 2. Hydrogen atoms and lattice H_2O molecule are omitted for clarity.

Figure S5. De-convoluted Mn2p XPS spectrum of complex 1.

Figure S6. De-convoluted Mn2p XPS spectrum of complex 2.

Figure S7. De-convoluted Mn2p XPS spectrum of complex 3.

Figure S8. Cyclic voltammetric traces for complex 1 displaying disappearance of an electrochemical response at ca. 0.58 V on multiple scans.

Figure S9. Temperature dependence of χT product (log scale) at 1000 Oe for polycrystalline samples for complexes 1 (left), 2 (middle) and 3 (right).

Figure S10. Field dependence of the magnetization as M vs H plots for complexes 1 (left), 2 (middle) and 3 (right) at 2 and 5 K, respectively.

Figure S11. Field dependence of the magnetization as M vs H/T plots for complexes 1 (left), 2 (middle) and 3 (right) at 2 and 5 K, respectively.

the magnetization for complexes 1 (left), 2 (middle) and 3 (right) collected at 300 K. The red line represents the linear fit to the data.

Figure S14. Changes in the absorption spectra (top) and cyclic voltammograms (bottom) of complex 1 on addition of 150 equiv. of H_2O_2 .

Figure S15. Changes in the absorption spectra (top) and cyclic voltammograms (bottom) of complex 2 on addition of 150 equiv. of H_2O_2 .

Figure S16. Changes in the absorption spectra (top) and cyclic voltammograms (bottom) of complex 3 on addition of 150 equiv. of H_2O_2 .

Figure S17. Top: Change in the volume of evolved O_2 with different concentration of complex 2 keeping constant [H₂O₂]. Bottom: rate change in O_2 evolution as a function of complex concentration.

Figure S18. Top: Change in the volume of evolved O_2 with different concentration of complex **3** keeping constant [H₂O₂]. Bottom: rate change in O_2 evolution as a function of complex concentration.

Figure S19. Top: Time-dependent evolution of O_2 after successive additions of H_2O_2 (150-750 equiv.) to a solution of complex **2**. Bottom: Lineweaver–Burk plot between 1/V and 1/[H₂O₂].

Figure S20. Top: Time-dependent evolution of O_2 after successive additions of H_2O_2 (150-750 equiv.) to a solution of complex **2**. Bottom: Lineweaver–Burk plot between 1/V and 1/[H_2O_2].

	1	2	3	
Empirical formula	$C_{39}H_{21}Mn_3N_{15}O_7S_6$	$C_{48}H_{58}Mn_3N_{16}NaO_{11}S_9$	$C_{76}H_{71}Mn_4N_{25}O_{12}$	
formula mass	1168.89	1511.45	1746.33	
T [K]	293(2)	293(2)	293(2)	
Crystal system	Triclinic	Orthorhombic	Monoclinic	
Space group	<i>P</i> -1	Pbcn	<i>P</i> 2 ₁ /c	
<i>a</i> [Å]	9.3373(5)	34.750 (2)	13.0764(2)	
<i>b</i> [Å]	14.7042(7)	17.5751 (7)	25.6016(5)	
<i>c</i> [Å]	24.1731(12)	20.5572 (11)	24.1881(4)	
α [°]	95.157(4)	90	90	
β[°]	91.831(4)	90	93.0681(18)	
γ [°]	100.293(4)	90	90	
<i>V</i> [Å ³]	3248.4(3)	12555.0 (11)	8086.0 (3)	
Ζ	2	8	4	
<i>d</i> [g cm ⁻³]	1.195	1.599	1.434	
$\mu [\mathrm{mm}^{-1}]$	0.815	0.970	0.687	
F(000)	1174	6208	3592	
Final <i>R</i> indices	$R_1 = 0.0981$	$R_1 = 0.1043$		
$[I \ge 2\sigma(I)]^a$	$wR_2 = 0.2081$	$wR_2 = 0.2010$	$wR_2 = 0.1846$	
R indices (all	$R_1 = 0.1622$	$R_1 = 0.1535$	$R_1 = 0.1148$	
data)	$wR_2 = 0.2357$	$wR_2 = 0.2236$	$wR_2 = 0.2089$	
GOF (F ²)	1.023	1.094	1.030	
CCDC	1900796	1900797	1900798	

 Table S1. Crystallographic data collection and structure refinement parameters for complexes 1–3.

 $\frac{||}{a R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; wR = \{ [\Sigma (|F_0|^2 |F_c|^2)^2] \}^{1/2}}$

Atoms	1	Atoms	2	Atoms	3
Mn(1)-O(7)	2.001(5)	Mn(1)-O(7)	1.744(5)	N(1)-Mn(1)	2.273(4)
Mn(1)-N(2)	2.167(5)	Mn(1)-N(2)	1.999(7)	N(2)-Mn(1)	2.196(4)
Mn(1)-N(3)	2.200(6)	Mn(1)-N(3)	2.124(7)	N(3)-Mn(1)	2.251(4)
Mn(1)-N(1)	2.252(6)	Mn(1)-N(1)	2.126(7)	N(4)-Mn(4)	2.188(4)
Mn(1)-N(10)	2.348(6)	Mn(1)-N(14)	2.357(7)	N(5)-Mn(3)	2.176(4)
Mn(1)-N(15)	2.460(7)	Mn(1)-N(10)	2.408(7)	N(6)-Mn(2)	2.259(4)
Mn(2)-O(7)	1.909(6)	Mn(2)-O(7)	1.963(5)	N(7)-Mn(2)	2.159(4)
Mn(2)-N(7)	2.131(6)	Mn(2)-N(7)	2.167(6)	N(8)-Mn(2)	2.307(4)
Mn(2)-N(8)	2.216(6)	Mn(2)-N(8)	2.243(7)	N(9)-Mn(4)	2.153(4)
Mn(2)-N(6)	2.228(5)	Mn(2)-N(6)	2.272(6)	N(10)-Mn(1)	2.164(4)
Mn(2)-N(4)	2.434(7)	Mn(2)-N(4)	2.370(7)	N(11)-Mn(3)	2.281(4)
Mn(2)-N(14)	2.469(6)	Mn(2)-N(15)	2.429(7)	N(12)-Mn(3)	2.177(4)
Mn(3)-O(7)	1.934(5)	Mn(3)-O(7)	1.978(5)	N(13)-Mn(3)	2.267(4)
Mn(3)-N(12)	2.135(6)	Mn(3)-N(12)	2.184(7)	N(14)-Mn(4)	2.168(4)
Mn(3)-N(13)	2.228(6)	Mn(3)-N(11)	2.244(7)	N(15)-Mn(2)	2.185(4)
Mn(3)-N(11)	2.231(6)	Mn(3)-N(13)	2.277(7)	O(7)-Mn(2)	2.007(3)
Mn(3)-N(9)	2.312(7)	Mn(3)-N(5)	2.352(7)	O(7)-Mn(3)	2.006(3)
		Mn(3)-N(9)	2.394(7)	O(7)-Mn(1)	2.009(3)
				O(7)-Mn(4)	2.120(3)
Bond Angles (0)				O(9)-Mn(4)	2.253(5)
O(7) Mp(1) N(2)	172 5(2)	O(7)-Mn(1)-N(2)	178.4(3)	O(7) Mp(1) N(10)	107.05(15)
O(7)-Mn(1)-N(2) O(7) Mn(1) N(3)	1/2.3(2)	O(7)-Mn(1)-N(3)	102.0(3)	O(7) - Mn(1) - N(10) O(7) - Mn(1) - N(2)	107.03(13) 141.07(15)
O(7)-Mn(1)-N(3)	74.0(2)	N(2)-Mn(1)-N(3)	77.2(3)	O(7)-WIII(1)-N(2)	141.97(13)
N(2)-MII(1)-N(3)	74.0(2)	O(7)-Mn(1)-N(1)	102.8(3)	N(10)-Mn(1)-N(2)	109.02(10)
O(7)-MIN(1)-N(1)	100.8(2)	N(2)-Mn(1)-N(1)	78.0(3)	O(7)-MII(1)-N(3) N(10) MII(1) N(2)	95.08(14)
N(2) - Mn(1) - N(1)	(3.0(2))	N(3)-Mn(1)-N(1)	155 2(3)	N(10)-Mn(1)-N(3)	94./1(10)
N(3)-Min(1)- $N(1)$	14/.5(2)	O(7)-Mn(1)-N(14)	93 0(2)	N(2)-Mn(1)-N(3)	(1.81(15))
O(7)-Min(1)-N(10)	90.0(2)	N(2)-Mn(1)-N(14)	88 4(3)	O(7)-Min(1)-N(1)	105.62(14)
N(2) - Min(1) - N(10)	95.1(2)	N(3)-Mn(1)-N(14)	88 9(2)	N(10)-Mn(1)-N(1)	107.91(16)
N(3) - Win(1) - N(10)	88.9(2)	N(1)-Mn(1)-N(14)	89 7(2)	N(2) - Mn(1) - N(1)	142 21(15)
N(1)-Min(1)-N(10)	91.2(2)	O(7)-Mn(1)-N(10)	91 7(2)	N(3)-Mn(1)-N(1)	142.21(16)
O(7)-Mn(1)-N(15)	86.9(2)	N(2)-Mn(1)-N(10)	86.9(3)	O(7)-Mn(2)-N(7)	152.43(15)
N(2)-Mn(1)-N(15)	88.5(2)	N(2) - Mn(1) - N(10)	87.0(2)	O(7)-Mn(2)-N(15)	109.33(15)
N(3)-Mn(1)-N(15)	88.0(2)	1N(3)-1N(1)-1N(10)	07.0(2)	N(7)-Mn(2)-N(15)	97.33(16)

Table S2. Selected bond distances (Å) and bond angles (°) for complexes 1–3.

N(1)-Mn(1)-N(15)	93.9(2)	N(1)-Mn(1)-N(10)	92.4(2)	O(7)-Mn(2)-N(6)	107.12(14)
N(10)-Mn(1)-N(15)	174.5(2)	N(14)-Mn(1)-N(10)	174.3(2)	N(7)-Mn(2)-N(6)	73.61(15)
O(7)-Mn(2)-N(7)	175.4(3)	O(7)-Mn(2)-N(7)	176.5(2)	N(15)-Mn(2)-N(6)	100.54(16)
O(7)-Mn(2)-N(8)	107.1(2)	O(7)-Mn(2)-N(8)	110.0(2)	O(7)-Mn(2)-N(8)	97.35(14)
N(7)-Mn(2)-N(8)	73.7(2)	N(7)-Mn(2)-N(8)	73.3(2)	N(7)-Mn(2)-N(8)	71.20(16)
O(7)-Mn(2)-N(6)	104.4(2)	O(7)-Mn(2)-N(6)	102.8(2)	N(15)-Mn(2)-N(8)	98.47(16)
N(7)-Mn(2)-N(6)	74.8(2)	N(7)-Mn(2)-N(6)	73.8(2)	N(6)-Mn(2)-N(8)	141.70(15)
N(8)-Mn(2)-N(6)	148.4(2)	N(8)-Mn(2)-N(6)	147.2(2)	O(7)-Mn(3)-N(5)	108.08(14)
O(7)-Mn(2)-N(4)	93.2(2)	O(7)-Mn(2)-N(4)	88.1(2)	O(7)-Mn(3)-N(12)	145.83(15)
N(7)-Mn(2)-N(4)	91.2(2)	N(7)-Mn(2)-N(4)	91.3(2)	N(5)-Mn(3)-N(12)	105.97(15)
N(8)-Mn(2)-N(4)	95.3(2)	N(8)-Mn(2)-N(4)	87.1(2)	O(7)-Mn(3)-N(13)	97.77(14)
N(6)-Mn(2)-N(4)	84.6(2)	N(6)-Mn(2)-N(4)	94.2(2)	N(5)-Mn(3)-N(13)	102.45(16)
O(7)-Mn(2)-N(14)	87.1(3)	O(7)-Mn(2)-N(15)	93.0(2)	N(12)-Mn(3)-N(13)	71.91(15)
N(7)-Mn(2)-N(14)	88.5(2)	N(7)-Mn(2)-N(15)	88.1(2)	O(7)-Mn(3)-N(11)	104.72(14)
N(8)-Mn(2)-N(14)	83.6(2)	N(8)-Mn(2)-N(15)	83.7(2)	N(5)-Mn(3)-N(11)	99.01(16)
N(6)-Mn(2)-N(14)	96.4(2)	N(6)-Mn(2)-N(15)	94.6(2)	N(12)-Mn(3)-N(11)	72.39(15)
N(4)-Mn(2)-N(14)	178.9(2)	N(4)-Mn(2)-N(15)	170.6(2)	N(13)-Mn(3)-N(11)	142.15(15)
O(7)-Mn(3)-N(12)	164.2(3)	O(7)-Mn(3)-N(12)	173.6(2)	O(7)-Mn(4)-N(9)	91.19(14)
O(7)-Mn(3)-N(13)	104.4(3)	O(7)-Mn(3)-N(11)	112.5(2)	O(7)-Mn(4)-N(14)	92.38(14)
N(12)-Mn(3)-N(13)	73.3(2)	N(12)-Mn(3)-N(11)	73.2(3)	N(9)-Mn(4)-N(14)	112.66(16)
O(7)-Mn(3)-N(11)	105.9(2)	O(7)-Mn(3)-N(13)	101.7(2)	O(7)-Mn(4)-N(4)	90.21(15)
N(12)-Mn(3)-N(11)	74.0(2)	N(12)-Mn(3)-N(13)	72.5(3)	N(9)-Mn(4)-N(4)	122.08(16)
N(13)-Mn(3)-N(11)	147.0(2)	N(11)-Mn(3)-N(13)	145.7(2)	N(14)-Mn(4)-N(4)	125.12(16)
O(7)-Mn(3)-N(9)	94.9(3)	O(7)-Mn(3)-N(5)	86.9(2)	O(7)-Mn(4)-O(9)	174.53(16)
N(12)-Mn(3)-N(9)	100.8(2)	N(12)-Mn(3)-N(5)	90.3(2)	N(9)-Mn(4)-O(9)	92.69(18)
N(13)-Mn(3)-N(9)	93.6(2)	N(11)-Mn(3)-N(5)	89.8(2)	N(14)-Mn(4)-O(9)	89.69(18)
N(11)-Mn(3)-N(9)	96.4(2)	N(13)-Mn(3)-N(5)	90.4(2)	N(4)-Mn(4)-O(9)	84.46(18)
		O(7)-Mn(3)-N(9)	91.3(2)		
		N(12)-Mn(3)-N(9)	91.6(2)		
		N(11)-Mn(3)-N(9)	89.2(2)		
		N(13)-Mn(3)-N(9)	91.7(2)		
		N(5)-Mn(3)-N(9)	177.5(2)		
Mn(2)-O(7)-Mn(3)	118.9(3)	Mn(1)-O(7)-Mn(2)	124.8(3)	Mn(2)-O(7)-Mn(3)	110.79(15)
Mn(2)-O(7)-Mn(1)	116.3(3)	Mn(1)-O(7)-Mn(3)	123.8(3)	Mn(2)-O(7)-Mn(1)	113.98(15)
Mn(3)-O(7)-Mn(1)	122.8(3)	Mn(2)-O(7)-Mn(3)	111.4(3)	Mn(3)-O(7)-Mn(1)	111.20(15)
				Mn(2)-O(7)-Mn(4)	104.96(14)

 	 	Mn(3)-O(7)-Mn(4)	109.05(15)
 	 	Mn(1)-O(7)-Mn(4)	106.48(15)