Luminescent Iridium(III) Complexes of N-Heterocyclic Carbene Ligands

 Prepared Using the 'Click Reaction'Rebecca E. Karmis, ${ }^{\text {a }}$ Serena Carrara, ${ }^{\text {a }}$ Amy A. Baxter, ${ }^{\text {b }}$ Conor F. Hogan, ${ }^{\text {a }}$ Mark D. Hulett ${ }^{\text {b }}$ and Peter J. Barnard ${ }^{\text {a * }}$
${ }^{a}$ Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia, Fax: (+)61 39479 1266, E-mail: p.barnard@latrobe.edu.au
${ }^{b}$ Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.

Ligand Synthesis

$\mathrm{R}=\mathrm{Ph}(85 \%)$ $\mathrm{R}=\mathrm{CH}_{3}$

$\mathrm{CH}_{3} \mathrm{CN}$ $100^{\circ} \mathrm{C}$
12 h

(1a) $R=P h(80 \%)$
(1c) $\mathrm{R}=\mathrm{Ph}$
(1b) $\mathrm{R}=\mathrm{CH}_{3}(96 \%)$
(1d) $\mathrm{R}=\mathrm{CH}_{3}$

Scheme S1. Synthesis of imidazolium salts 1a and 1b (with their corresponding bis-imidazolium salt biproducts 1c and 1d, respectively).

$$
\begin{aligned}
& \text { 1) } \mathrm{CH} 3 \mathrm{CN} \\
& 100^{\circ} \mathrm{C}, 12 \mathrm{~h} \\
& \text { For } 2 \mathrm{a}: \\
& \text { 2) } \mathrm{KPF}_{6}
\end{aligned}
$$

Scheme S2. Synthesis of the alkyne functionalized imidazolium salts $\mathbf{2 a}$ and $\mathbf{2 b}$.

1-benzyl-1H-imidazole ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.92\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{imi}}\right)$, $7.11(\mathrm{~s}$, $1 \mathrm{H}, H_{\mathrm{imi}}$), 7.16-7.18 (m, 2H, H_{Ar}), 7.32-7.38 (m, $3 \mathrm{H}, H_{\mathrm{Ar}}$), $7.72\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR (100 Hz , $\left.\mathrm{CDCl}_{3}\right): \delta 51.2\left(\mathrm{CH}_{2}\right), 119.5\left(C_{\mathrm{imi}}\right), 127.5\left(C_{\mathrm{Ar}}\right), 128.5\left(C_{\mathrm{imi}}\right), 129.1\left(C_{\mathrm{Ar}}\right), 129.2\left(C_{\mathrm{Ar}}\right), 136.0\left(C_{\mathrm{q}}\right)$, $137.4\left(C_{\text {imi }}\right)$. HRESI-MS ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right): m / \mathrm{z} 181.0735\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right] \mathrm{Na}^{+}$calcd. 181.0736.

Propargyl tosylate A solution of toluenesulfonyl chloride ($4.86 \mathrm{~g}, 25.5 \mathrm{mmol}$) in acetone (10 mL) was cooled in an ice bath and propargyl alcohol ($1.48 \mathrm{~mL}, 25.5 \mathrm{mmol}$) in $10 \% \mathrm{NaOH}(25 \mathrm{~mL})$ was added with stirring over 15 min . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic layers washed with water ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and the solvent removed in vacuo to give the product as a colorless liquid ($5.03 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$: $\delta 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66(\mathrm{t}, 1 \mathrm{H}, J=2.42 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH}), 4.85(\mathrm{~d}, 2 \mathrm{H}, J=2.42 \mathrm{~Hz}, \mathrm{CH}$) , $7.48(\mathrm{dd}, 2 \mathrm{H}, J=$ $\left.2.60,8.58 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.82\left(\mathrm{dd}, 2 \mathrm{H}, J=1.67,6.55 \mathrm{~Hz}, H_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 21.7\left(\mathrm{CH}_{3}\right)$, $57.5\left(\mathrm{CH}_{2}\right), 75.4(C \equiv \mathrm{CH}), 77.4(\mathrm{C} \equiv \mathrm{CH}), 128.1\left(C_{\mathrm{Ar}}\right), 130.0\left(C_{\mathrm{Ar}}\right), 132.9\left(C_{\mathrm{q}}\right), 145.4\left(C_{\mathrm{q}}\right)$.

1a To a solution of 1-benzylimidazole ($2.40 \mathrm{~g}, 15.2 \mathrm{mmol}$) in acetonitrile (50 mL) was added 1,2dibromoethane ($13.0 \mathrm{~mL}, 152 \mathrm{mmol}$) and the mixture was refluxed at $100^{\circ} \mathrm{C}$ overnight. The mixture was concentrated in vacuo and the resulting white solid corresponding to the disubstituted compound (1c) was collected. To the filtrate was added ether and an off-white solid formed after scratching. This solid was collected, giving the title compound ($4.20 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, d_{6^{-}}$DMSO): δ $3.97\left(\mathrm{t}, 2 \mathrm{H}, J=5.85 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.65\left(\mathrm{t}, 2 \mathrm{H}, J=5.83 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 7.39-7.44(\mathrm{~m}, 5 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 7.89\left(\mathrm{~d}, 2 \mathrm{H}, J=1.95 \mathrm{~Hz}, H_{\mathrm{imi}}\right), 9.45\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{imi}}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, d_{6}$ - DMSO): $\delta 31.5\left(\mathrm{CH}_{2}\right)$, $50.2\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{2}\right), 122.7\left(C_{\mathrm{imi}}\right), 122.8\left(C_{\mathrm{imi}}, 128.1\left(C_{\mathrm{Ar}}\right), 128.7\left(C_{\mathrm{Ar}}\right), 129.0\left(C_{\mathrm{Ar}}\right), 134.7\left(C_{\mathrm{q}}\right)\right.$, $136.7\left(C_{\text {imi }}\right)$. HRESI-MS ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$: $m / \mathrm{z} 265.0336\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrN}_{2}\right]^{+}$calcd. 265.0335.

1b This compound was prepared using the same procedure as that described for 1a from 1ethylimidazole ($1.01 \mathrm{~mL}, 10.4 \mathrm{mmol}$) in acetonitrile (40 mL), 1,2-dibromoethane ($8.96 \mathrm{~mL}, 104$ mmol). The reaction mixture was concentrated in vacuo and the resulting white solid was collected (1d). To the filtrate was added ether and the title compound was obtained as a brown oil (2.82 g , 96%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, d_{6^{-}} \mathrm{DMSO}$): $\delta 1.43\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.29 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $3.97\left(\mathrm{t}, 2 \mathrm{H}, J=5.98 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $4.25\left(\mathrm{q}, 2 \mathrm{H}, J=7.46,14.62 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.63\left(\mathrm{t}, 2 \mathrm{H}, J=5.88 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.89\left(\mathrm{~s}, 2 \mathrm{H}, H_{\mathrm{imi}}\right), 9.38(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=4.30 \mathrm{~Hz}, H_{\mathrm{imi}}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{~Hz}, d_{6}$ - DMSO): $\delta 15.1\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right)$, $122.3\left(C_{\mathrm{imi}}\right), 122.5\left(C_{\mathrm{imi}}\right), 136.3\left(C_{\mathrm{imi}}\right)$. HRESI-MS ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{m} / \mathrm{z} 203.0181\left[\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{BrN}_{2}\right]^{+}$calcd. 203.0814.

2a To a solution of 1-benzylimidazole ($2.0 \mathrm{~g}, 12.6 \mathrm{mmol}$) in acetonitrile (50 mL) was added propargyl tosylate ($2.16 \mathrm{~mL}, 12.6 \mathrm{mmol}$) and the mixture was heated at $100^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was concentrated in vacuo and to the residue was added ether and the formed oil was dissolved in
water (15 mL). A saturated aqueous solution of $\mathrm{KPF}_{6}(\sim 1 \mathrm{~mL})$ was then added and after 30 min the white solid was collected and washed several times with water and dried to give the title product (4.05 g, 86%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, d_{6}$ - DMSO): $\delta 3.84(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} H), 5.17(\mathrm{~d}, 2 \mathrm{H}, J=4.0 \mathrm{~Hz}$, CH_{2}), $5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 7.39-7.44\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.83\left(\mathrm{dt}, 2 \mathrm{H}, J=1.95,10.32 \mathrm{~Hz}, H_{\mathrm{imi}}\right), 9.38(\mathrm{~s}$, $\left.1 \mathrm{H}, H_{\mathrm{imi}}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{~Hz}, d_{6}$ - DMSO): $\delta 38.8\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 76.0(\mathrm{C} \equiv \mathrm{CH}), 79.1(\mathrm{C} \equiv \mathrm{CH})$, $122.8\left(C_{\mathrm{imi}}\right), 122.9\left(C_{\mathrm{imi}}\right), 128.4\left(C_{\mathrm{Ar}}\right), 128.9\left(C_{\mathrm{Ar}}\right), 129.1\left(C_{\mathrm{Ar}}\right), 134.7\left(C_{\mathrm{q}}\right), 136.3\left(C_{\mathrm{imi}}\right)$. HRESI-MS $^{+}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{m} / \mathrm{z} 197.1077\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2}\right]^{+}$calcd. 197.1073.

2b This compound was prepared using the same procedure as that described for 2a from 1-ethyl imidazole ($0.585 \mathrm{~g}, 6.09 \mathrm{mmol}$), propargyl tosylate ($1.28 \mathrm{~g}, 6.09 \mathrm{mmol}$) and acetonitrile (50 mL) ($0.710 \mathrm{~g}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR for tosylate anion ($500 \mathrm{~Hz}, d_{6^{-}} \mathrm{DMSO}$): $\delta 1.41\left(\mathrm{t}, 3 \mathrm{H}, J=7.60 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 3.84(\mathrm{t}, 1 \mathrm{H}, J=2.58 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} H), 4.21\left(\mathrm{q}, 2 \mathrm{H}, J=7.25,14.98 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.17(\mathrm{~d}$, $\left.2 \mathrm{H}, J=2.50 \mathrm{~Hz}, \mathrm{C} H_{2}\right), 7.10\left(\mathrm{~d}, 2 \mathrm{H}, J=8.09 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.46\left(\mathrm{~d}, 2 \mathrm{H}, J=8.43 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.81(\mathrm{t}, 1 \mathrm{H}, J=$ $1.78 \mathrm{~Hz}, H_{\mathrm{imi}}$), $7.86\left(\mathrm{t}, 1 \mathrm{H}, J=1.90 \mathrm{~Hz}, H_{\mathrm{imi}}\right), 9.28\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{imi}}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, d_{\sigma^{-}}$DMSO): δ $15.0\left(\mathrm{CH}_{3}\right)$, $20.7\left(\mathrm{CH}_{3}\right)$, $38.5\left(\mathrm{CH}_{2}\right)$, $44.4\left(\mathrm{CH}_{2}\right)$, $76.1(\mathrm{C} \equiv \mathrm{CH})$, $78.9(\mathrm{C} \equiv \mathrm{CH}), 122.3\left(C_{\mathrm{imi}}\right), 122.5$ $\left(C_{\mathrm{imi}}\right), 125.5\left(C_{\mathrm{Ar}}\right), 128.0\left(C_{\mathrm{Ar}}\right), 135.8\left(C_{\mathrm{q}}\right), 137.5\left(C_{\mathrm{q}}\right), 145.8\left(C_{\mathrm{imi}}\right)$. HRESI-MS $^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right): m / \mathrm{z}$ $135.0917\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}\right]^{+}$calcd. 135.0917. ${ }^{1} \mathrm{H}$ NMR for $\mathrm{PF}_{6}{ }^{-}$anion ($400 \mathrm{~Hz}, d_{6}-\mathrm{DMSO}$): $\delta 1.41(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=7.36 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.77(\mathrm{t}, 1 \mathrm{H}, J=2.68 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH}), 4.22(\mathrm{q}, 2 \mathrm{H}, J=7.28,15.83 \mathrm{~Hz}, \mathrm{CH}$), $5.16(\mathrm{~d}, 2 \mathrm{H}$, $\left.J=2.64 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.78-7.81\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{imi}}\right), 9.25\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{imi}}\right)$. To exchange the anion from hexafluorophosphate to chloride, a solution of tetrabutylammonium chloride in THF was added to a solution of $\mathbf{2 b}(1.00 \mathrm{~g}, 4.35 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ and the mixture was stirred for 30 min , during which time an oil separated from the mixture. The solvent was decanted the residue was washed several times with THF and then dried in vacuo ($0.456 \mathrm{~g}, 44 \%$). ${ }^{1} \mathrm{H}$ NMR for $\mathbf{2 b} \cdot \mathbf{C l}\left(500 \mathrm{~Hz}, d_{6^{-}}\right.$ DMSO): $\left.\delta 1.43(\mathrm{t}, 3 \mathrm{H}, J=7.08 \mathrm{~Hz}, \mathrm{CH})_{3}\right), 3.85(\mathrm{t}, 1 \mathrm{H}, J=2.56 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=7.23,15.77$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 5.23\left(\mathrm{~d}, 2 \mathrm{H}, J=2.55 \mathrm{~Hz}, \mathrm{C} H_{2}\right), 7.85\left(\mathrm{t}, 1 \mathrm{H}, J=1.75 \mathrm{~Hz}, H_{\mathrm{imi}}\right), 7.89\left(\mathrm{t}, 1 \mathrm{H}, J=1.84 \mathrm{~Hz}, H_{\mathrm{imi}}\right)$, $9.43\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{imi}}\right)$.

X ray crystallography

Single crystals of the pro-ligands $\mathbf{4 a}$ and $\mathbf{5 b}$ and $\operatorname{Ir}(\mathrm{III})$ complex $\mathbf{1 1}$ suitable for X-ray diffraction studies were grown by slow diffusion of ether into DCM solutions ($\mathbf{4 a}$ and 11) and slow diffusion of ether into acetonitrile solution (5b). Crystallographic data for all structures determined are given in Table S1. For all samples, crystals were removed from the crystallisation vial and immediately coated with paratone oil on a glass slide. A suitable crystal was mounted in Paratone oil on a glass fibre and cooled rapidly to 173 K in a stream of cold N_{2} using an Oxford low temperature device. Diffraction data were measured using an Oxford Gemini diffractometer mounted with Mo-K $\alpha \lambda=0.71073 \AA$ and $\mathrm{Cu}-\mathrm{K} \alpha \lambda=1.54184$. Data were reduced and corrected for absorption using the CrysAlis Pro program. The SHELXL2013-2 program was used to solve the structures with Direct Methods, with refinement by the Full-Matrix Least-Squares refinement techniques on F2. The non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed geometrically and refined using the riding model. Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. All calculations were carried out using the program Olex2. Further XRD details are provided in the Supporting Information. CCDC 1905286-1905288 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Table S1. Crystallographic refinement data for compounds $\mathbf{4 a}, \mathbf{5 b}$ and 11.

Identification code	4a	5b	11
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{P}$	$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{I}_{2} \mathrm{~N}_{5}$	$\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{IrN}_{7} \mathrm{P}$
Formula weight	475.38	537.18	1011.82
Temperature/K	172.99(10)	173	173.01(10)
Crystal system	orthorhombic	triclinic	monoclinic
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	P-1	$\mathrm{P} 21 / \mathrm{c}$
a / \AA ¢	9.64361(15)	11.1054(5)	17.1602(5)
b/ \AA	16.6534(4)	11.9823(9)	12.9309(4)
c/Å	26.2220(4)	15.3663(9)	17.8048(5)
$\alpha /{ }^{\circ}$	90	99.443(5)	90
$\beta /{ }^{\circ}$	90	92.342(4)	92.613(3)
$\gamma /{ }^{\circ}$	90	101.879(5)	90
Volume/ \AA^{3}	4211.22(13)	1968.0(2)	3946.7(2)
Z	8	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.5	1.813	1.703
μ / mm^{-1}	1.813	3.202	3.627
F(000)	1952	1032	2000
Crystal size $/ \mathrm{mm}^{3}$	$0.25 \times 0.15 \times 0.1$	$0.2 \times 0.18 \times 0.12$	$0.08 \times 0.06 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.288 to 130.126	5.888 to 52.742	5.702 to 52.744
Index ranges	$\begin{aligned} & -11 \leq h \leq 6,-18 \leq \mathrm{k} \leq 18, \\ & -30 \leq 1 \leq 28 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 13,-14 \leq \mathrm{k} \leq 14, \\ & -19 \leq 1 \leq 19 \end{aligned}$	$\begin{aligned} & -21 \leq \mathrm{h} \leq 19,-16 \leq \mathrm{k} \leq 16,-22 \leq 1 \leq \\ & 22 \end{aligned}$
Reflections collected	14267	19296	45853
Independent reflections	$\begin{aligned} & 6850\left[\mathrm{R}_{\text {int }}=0.0226,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0303\right] \end{aligned}$	$\begin{aligned} & 8038\left[\mathrm{R}_{\text {int }}=0.0272, \mathrm{R}_{\text {sigma }}\right. \\ & =0.0345] \end{aligned}$	$8063\left[\mathrm{R}_{\text {int }}=0.0304, \mathrm{R}_{\text {sigma }}=0.0205\right]$
Data/restraints/parameters	6850/0/577	8038/0/419	8063/0/507
Goodness-of-fit on F^{2}	1.06	1.04	1.07
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\begin{aligned} & \mathrm{R}_{1}=0.0530, \mathrm{wR}_{2}= \\ & 0.1451 \end{aligned}$	$\mathrm{R}_{1}=0.0245, \mathrm{wR}_{2}=0.0539$	$\mathrm{R}_{1}=0.0328, \mathrm{wR}_{2}=0.0849$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0575, \mathrm{wR}_{2}= \\ & 0.1498 \end{aligned}$	$\mathrm{R}_{1}=0.0308, \mathrm{wR}_{2}=0.0575$	$\mathrm{R}_{1}=0.0392, \mathrm{wR}_{2}=0.0896$
Largest diff. peak/hole / e \AA^{-3}	0.68/-0.35	0.72/-0.68	2.18/-1.69
Flack parameter	0.505(11)		

Figure S1. Absorbance spectra of 1×10^{-5} solutions of complexes 7-11. (green) 7; (pink) 8; (blue) 9; (orange) 10; (red) 11.

Figure S2. Co-reactant ECL spectra for the complexes 7-9 and $\mathbf{1 1}(1 \mathrm{mM})$ in acetonitrile containing $0.1 \mathrm{M}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte and 10 mM tripropylamine (TPA) as the co-reactant. (green) 7; (pink) 8; (blue) 9; (red) 11; (black) $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$.

