Electronic Supplementary Information for:

Synthesis and characterization of 2-*t*-butylimino-functionalized indolyl rare-earth metal amido complexes for the catalytic addition of terminal alkynes to carbodiimides: the dimeric complexes with the alkynide species in the μ - η^1 : η^2 bonding modes

Zhijun Feng,^{*a,c*} Zeming Huang,^{*a*} Shaowu Wang,*^{*a,b,d*} Yun Wei,^{*a*} Shuangliu Zhou^{*a*} and Xiancui Zhu^{*a*}

^{*a*} Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

^b College of Biological and Chemical Engineering, Anhui Polytechnic University,
Wuhu, Anhui 241000, P. R. China.

^c School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P. R. China.
^d State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China.

E-mail: <u>swwang@mail.ahnu.edu.cn; wsw@ahpu.edu.cn</u>.

Contents

1. Figure S1–S8: NMR spectra of complexes 3, 5, 6 and 11	S2
2. Figure S9–S34: NMR spectra of substituted propiolamidines	S6
3. Figure S35–S42: Molecular structures and selected bond distances and	angles
of the complexes 2–6, 10, 11, 12	S19
4. Table S1–S3: Crystallographic data for 2–6, 10, 11, 12	S24

NMR spectra of complexes 3, 5, 6 and 11.

Figure S1. ¹H NMR spectrum of complex **3**.

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of complex 3.

Figure S4. $^{13}C\{^{1}H\}$ NMR spectrum of complex 5.

Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of complex 6.

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of complex 11.

NMR spectra of substituted propiolamidines.

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum of compound **9a**.

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of compound **9ba**.

Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of compound **9ca**.

S16. ${}^{13}C{}^{1}H$ NMR spectrum of compound **9da**.

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum of compound **9ab**.

Figure S19. ¹H NMR spectrum of compound **9bb**.

Figure S20. ${}^{13}C{}^{1}H$ NMR spectrum of compound **9bb**.

Figure S22. ${}^{13}C{}^{1}H$ NMR spectrum of compound **9cb**.

Figure S24. ¹³C{¹H} NMR spectrum of compound **9db**.

Figure S26. $^{13}C{^{1}H}$ NMR spectrum of compound **9ac**.

Figure S28. $^{13}C{^{1}H}$ NMR spectrum of compound **9bc**.

Figure S30. $^{13}C{^{1}H}$ NMR spectrum of compound **9cc**.

Figure S32. $^{13}C{^{1}H}$ NMR spectrum of compound **9dc**.

Figure S33. ¹H NMR spectrum of compound **9ad.**

Figure S34. ¹³C{¹H} NMR spectrum of compound **9ad**.

Molecular structures and selected bond distances and angles of the complexes 2– 6, 10, 11, 12.

Figure S35. Structure of complex **2** (Ellipsoids at 30% probability level). Hydrogen atoms were omitted for clarity. Selected bond distances (Å) and angles (°): Er(1)–N(1) 2.271(2), Er(1)–N(2) 2.493(2), Er(1)–N(3) 2.197(2), Er(1)–N(4) 2.197(2), C(9)–N(2) 1.282(4), N(2)–C(9)–C(1) 123.0(3), N(1)–Er(1)–N(2) 72.94(8), N(3)–Er(1)–N(2) 100.73(9), N(4)–Er(1)–N(2) 143.46(8), N(3)–Er(1)–N(1) 120.63(9), N(4)–Er(1)–N(1) 97.86(9), N(4)–Er(1)–N(3) 113.81(9).

Figure S36. Structure of complex **3** (Ellipsoids at 30% probability level). Hydrogen atoms were omitted for clarity. Selected bond distances (Å) and angles (°): Y(1)–N(1) 2.293(2), Y(1)–N(2) 2.513(2), Y(1)–N(3) 2.208(2), Y(1)–N(4) 2.214(2), C(9)–N(2) 1.282(4), N(2)–C(9)–C(1) 123.1(3), N(1)–Y(1)–N(2) 72.04(8), N(3)–Y(1)–N(2) 100.61(9), N(4)–Y(1)–N(2) 142.73(9), N(3)–Y(1)–N(1) 121.87(9), N(4)–Y(1)–N(1) 98.12(9), N(4)–Y(1)–N(3) 114.41(10).

Figure S37. Structure of complex **4** (Ellipsoids at 30% probability level). Hydrogen atoms were omitted for clarity. Selected bond distances (Å) and angles (°): Dy(1)–N(1) 2.306(5), Dy(1)–N(2) 2.520(5), Dy(1)–N(3) 2.230(5), Dy(1)–N(4) 2.221(5), C(9)–N(2) 1.260(7), N(2)–C(9)–C(1) 122.9(6), N(1)–Dy(1)–N(2) 71.91(16), N(3)–Dy(1)–N(2) 100.01(18), N(4)–Dy(1)–N(2) 142.33(17), N(3)–Dy(1)–N(1) 122.65(18), N(4)–Dy(1)–N(1) 97.31(16), N(4)–Dy(1)–N(3) 115.45(19).

Figure S38. Structure of complex **5** (Ellipsoids at 30% probability level). Hydrogen atoms were omitted for clarity. Selected bond distances (Å) and angles (°): N(1)–Sm(1) 2.368(6), N(2)–Sm(1) 2.586(6), N(3)–Sm(1) 2.255(6), N(4)–Sm(1) 2.271(5), C(9)–N(2) 1.274(9), N(2)–C(9)–C(1) 123.7(7), N(1)–Sm(1)–N(2) 70.1(2), N(4)–Sm(1)–N(2) 140.7(2), N(3)–Sm(1)–N(2) 100.8(2), N(4)–Sm(1)–N(1) 97.3(2), N(3)–Sm(1)–N(1) 125.4(2), N(3)–Sm(1)–N(4) 115.9(2).

Figure S39. Structure of complex 6 (Ellipsoids at 30% probability level). Hydrogen atoms were omitted for clarity. Selected bond distances (Å) and angles (°): N(1)–Nd(1) 2.3967(19), N(2)–Nd(1) 2.611(2), N(3)–Nd(1) 2.292(2), N(4)–Nd(1) 2.2865(19), C(9)–N(2) 1.279(3), N(2)–C(9)–C(1) 123.4(2), N(1)–Nd(1)–N(2) 69.30(6), N(3)–Nd(1)–N(2) 101.34(7), N(4)–Nd(1)–N(2) 139.22(7), N(3)–Nd(1)–N(1) 125.97(7), N(4)–Nd(1)–N(1) 97.69(7), N(4)–Nd(1)–N(3) 116.49(7).

Figure S40. Structure of complex **10** (Ellipsoids at 30 % probability level). Hydrogen atoms were omitted for clarity. Selected bond distances (Å) and angles (°): N(1)–Yb(1) 2.258(2), N(2)–Yb(1) 2.471(2), N(3)–Yb(1) 2.174(2), N(4)–Yb(1) 2.169(2), C(9)–N(2) 1.282(3), N(2)–C(9)–C(1) 122.9(3), N(1)–Yb(1)–N(2) 73.15(7), N(3)–Yb(1)–N(2) 143.37(8), N(3)–Yb(1)–N(1) 97.87(8), N(4)–Yb(1)–N(2) 100.27(8), N(4)–Yb(1)–N(1) 122.81(8), N(4)–Yb(1)–N(3) 113.72(9).

Figure S41. Structure of complex 11 (Ellipsoids at 15 % probability level). Hydrogen atoms were omitted for clarity. Selected bond distances (Å) and angles (°): N(1)-Y(1)2.325(6), N(2)-Y(1) 2.470(7), N(3)-Y(1) 2.328(6), N(4)-Y(1) 2.494(6), N(5)-Y(2) 2.324(6), N(6)-Y(2) 2.429(6), N(7)-Y(2) 2.347(6), N(8)-Y(2) 2.508(6), C(9)-N(2) 1.253(11), C(22)-N(4) 1.268(10), C(43)-N(6) 1.293(9), C(56)-N(8) 1.295(9), C(27)-Y(1) 2.524(8), C(28)-Y(1) 2.877(8), C(27)-C(28) 1.198(10), C(27)-Y(2) 2.483(8), C(61)-Y(1) 2.502(8), C(61)-Y(2) 2.513(8), C(62)-Y(2) 2.943(8), C(61)-C(62) 1.176(10), N(2)-C(9)-C(1) 125.7(10), N(4)-C(22)-C(14) 123.7(8), N(6)-C(43)-C(35) 123.0(8), N(8)-C(56)-C(48) 123.6(7), N(3)-Y(1)-N(1) 167.1(2), N(3)-Y(1)-N(2) 103.2(2), N(1)-Y(1)-N(2) 72.3(2), N(3)-Y(1)-N(4) 71.6(2), N(1)-Y(1)-N(4) 96.2(2), N(2)-Y(1)-N(4) 91.7(2), N(3)-Y(1)-C(61) 91.2(3), N(1)-Y(1)-C(27) 89.2(2), N(3)-Y(1)-C(27) 98.4(2), N(1)-Y(1)-C(61) 100.4(2), N(5)-Y(2)-N(7) 164.3(2), N(5)-Y(2)-N(6) 72.8(2), N(7)-Y(2)-N(6) 106.2(2), N(5)-Y(2)-N(8) 93.0(2), N(7)-Y(2)-N(8) 71.3(2), N(6)-Y(2)-N(8) 92.15(19), N(5)-Y(2)-C(27) 103.2(2), N(7)-Y(2)-C(61) 97.0(2), N(7)-Y(2)-C(27) 92.3(2), C(28)-C(27)-Y(2) 166.2(7), C(62)-C(61)-Y(1) 161.9(7).

Figure S42. Structure of complex 12 (Ellipsoids at 15 % probability level). Hydrogen atoms were omitted for clarity. Selected bond distances (Å) and angles (°): N(1)-Yb(1) 2.285(3), N(2)-Yb(1) 2.504(4), N(3)-Yb(1) 2.292(3), N(4)-Yb(1) 2.404(3), N(5)-Yb(2) 2.300(3), N(6)-Yb(2) 2.493(3), N(7)-Yb(2) 2.287(3), N(8)-Yb(2) 2.422(3), C(9)–N(2) 1.285(6), C(22)–N(4) 1.288(5), C(40)–N(6) 1.292(5), C(53)–N(8) 1.281(5), C(27)-Yb(1) 2.483(4), C(28)-Yb(1) 2.954(4), C(27)-Yb(2) 2.479(4), C(27)–C(28) 1.216(5), C(58)-Yb(2) 2.473(4), C(59)-Yb(2) 3.035(4), C(58)-Yb(1) 2.488(4), C(58)-C(59) 1.205(5), N(2)-C(9)-C(1) 123.4(4), N(4)-C(22)-C(14) 123.3(4), N(6)-C(40)-C(32) 123.2(4), N(8)-C(53)-C(45) 122.4(4), N(1)-Yb(1)-N(3) 165.29(13), N(1)-Yb(1)-N(4)107.22(12), N(3)-Yb(1)-N(4)73.95(12), 72.28(13), N(3)-Yb(1)-N(2) 93.23(12), N(4)-Yb(1)-N(2) N(1)-Yb(1)-N(2)N(1)-Yb(1)-C(27)88.08(12), 97.01(12), N(1)-Yb(1)-C(58)91.63(13), N(3)-Yb(1)-C(27) 86.99(12), N(3)-Yb(1)-C(58) 103.02(12), N(5)-Yb(2)-N(6)72.90(11), N(7)-Yb(2)-N(5)164.76(11), N(5)-Yb(2)-N(8)104.28(11), N(7)-Yb(2)-N(6)91.97(11), N(8)-Yb(2)-N(6)90.66(11), N(7)-Yb(2)-N(8)N(5)-Yb(2)-C(27)N(7)-Yb(2)-C(27)73.41(11). 92.40(12), 102.29(11), N(5)-Yb(2)-C(58) 98.31(12), N(7)-Yb(2)-C(58) 88.24(12), C(28)-C(27)-Yb(2) 161.4(3), C(59)-C(58)-Yb(1) 156.1(4).

	2	3	4
formula	C ₂₅ H ₅₁ ErN ₄ Si ₄	$C_{25}H_{51}N_4Si_4Y$	$C_{25}H_{51}N_4Si_4Dy \\$
Fw	687.31	608.96	682.55
<i>T</i> (K)	293(2)	293(2)	293(2)
λ (Å)	0.71073	0.71073	0.71073
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	18.1565(16)	18.1922(16)	18.233(3)
<i>b</i> (Å)	11.6742(10)	11.6913(10)	11.728(2)
<i>c</i> (Å)	17.3053(15)	17.2934(15)	17.281(3)
$\alpha(\text{deg})$	90	90	90
β (deg)	109.1190(10)	108.9890(10)	108.947(2)
γ(deg)	90	90	90
$V(Å^3)$	3465.7(5)	3478.0(5)	3495.2(11)
Ζ	4	4	4
D _{calcd} (mg/m ³)	1.317	1.163	1.297
$\mu(\text{mm}^{-1})$	2.578	1.833	2.293
<i>F</i> (000)	1412	1296	1404
θ range (deg)	2.11-27.68	2.11-27.58	2.10-27.66
reflections collected	20220/80/22	20572/2004	29497/9952
/ unique	29320/8062	29372/1994	28487/8052
<i>R</i> (int)	0.0326	0.0610	0.0660
goodness-of-fit on F^2	1.031	1.002	1.005
$R_{l}, wR_{2} [I > 2\sigma(I)]$	0.0285, 0.0700	0.0460,0.0909	0.0530, 0.1324
R_1, wR_2 (all data)	0.0356, 0.0744	0.1020, 0.1080	0.0875, 0.1586
Largest diff. peak and hole (e $Å^{-3}$)	0.755 and -1.232	0.402 and -0.405	3.194 and -2.020

 Table S1. Crystallographic data for 2–4.

	5	6	10
formula	$C_{25}H_{51}N_4Si_4Sm$	$C_{25}H_{51}N_4Si_4Nd$	$C_{25}H_{51}N_4Si_4Yb$
Fw	670.40	664.29	693.09
<i>T</i> (K)	293(2)	293(2)	293(2)
λ (Å)	0.71073	0.71073	0.71073
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	18.356(4)	18.3322(11)	18.1425(13)
<i>b</i> (Å)	11.757(3)	11.7260(7)	11.6936(8)
<i>c</i> (Å)	17.248(4)	17.2138(10)	17.2342(12)
α(deg)	90	90	90
β (deg)	108.672(3)	108.5360(10)	109.0750(10)
γ(deg)	90	90	90
$V(Å^3)$	3526.6(14)	3508.4(4)	3455.5(4)
Ζ	4	4	4
D _{calcd} (mg/m ³)	1.263	1.258	1.332
μ (mm ⁻¹)	1.819	1.635	2.864
<i>F</i> (000)	1388	1380	1420
θ range (deg)	2.09–27.66	2.10-27.63	2.11-27.62
reflections collected	29465/9992	20001/0007	20226/2049
/ unique	28465/8093	29901/8097	29236/1948
<i>R</i> (int)	0.0899	0.0264	0.0298
goodness-of-fit on F^2	1.028	1.016	1.036
$R_{l}, wR_{2} [I > 2\sigma(I)]$	0.0573, 0.1298	0.0257, 0.0606	0.0251, 0.0598
R_1, wR_2 (all data)	0.1386, 0.1671	0.0369, 0.0657	0.0335, 0.0641
Largest diff. peak and hole (e $Å^{-3}$)	2.166 and -1.584	0.519 and -0.644	0.407 and -1.088

 Table S2. Crystallographic data for 5, 6, 10.

	11	12
formula	$C_{68}H_{70}N_8Y_2$	$C_{62}H_{78}N_8Si_2Yb_2$
Fw	1177.14	1337.58
<i>T</i> (K)	293(2)	293(2)
λ (Å)	0.71073	0.71073
crystal system	Monoclinic	Triclinic
space group	$P2_{1}/c$	Pī
a (Å)	12.995(3)	12.6269(9)
<i>b</i> (Å)	20.995(5)	12.9123(10)
c (Å)	23.338(6)	22.4030(17)
a(deg)	90	77.3030(10)
β (deg)	106.16	80.6500(10)
γ(deg)	90	61.7530(10)
$V(Å^3)$	6116(3)	3131.7(4)
Ζ	4	2
D _{calcd} (mg/m ³)	1.278	1.418
$\mu(\text{mm}^{-1})$	1.935	3.049
<i>F</i> (000)	2448	1348
θ range (deg)	1.63-25.03	1.82–25.41
reflections collected	43976/10794	31940/11514
/ unique	0.1550	
R(int)	0.1758	0.0267
goodness-of-fit on F^2	0.993	1.036
$R_{I}, wR_{2} \left[I > 2\sigma(I) \right]$	0.0725, 0.1799	0.0282, 0.0608
R_1, wR_2 (all data)	0.1724, 0.2264	0.0388, 0.0654
Largest diff. peak and hole (e $Å^{-3}$)	0.847 and -0.767	1.323 and -0.811

 Table S3. Crystallographic data for 11, 12.