Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information for Tuning the Magnetization Dynamics of Tb^{III}-Based Single-Chain Magnets Through Substitution on the Nitronyl Nitroxide Radical

Xiaoqing Liu, Yu-Xia Wang,* Zongsu Han, Tian Han, Wei Shi* and Peng Cheng*

Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry,

Nankai University, Tianjin 300071, China.

* To whom correspondence should be addressed. E-mail: shiwei@nankai.edu.cn; pcheng@nankai.edu.cn; wangyuxiank@163.com

Table of Contents

Section S1	Plots of Structural Data	
Section S2	Magnetic Characterizations	S3
Section S3	PXRD Patterns	S 8
Section S4	Tables	S9
Section S5	Crystal Structures and a.c. Magnetic Property of [Tb(hfac) ₃ (NIT-5-ThienPh) ₂]	

S1. Plots of Structural Data

Fig. S1 Packing diagram of 1 along the crystallographic a axis with the interchain C–H…F hydrogen bonds.

Fig. S2 Packing diagram of **2** along the crystallographic *b* axis with the interchain $C-H\cdots F$ hydrogen bonds.

S2. Magnetic Characterizations

Fig. S3 M versus H (black circles) and dM/dH versus H (purple solid line) plots for 1 at 2 K.

Fig. S4 M versus H (black circles) and dM/dH versus H (purple solid line) plots for 2 at 2 K.

Fig. S5 Magnetization versus HT^{-1} plots obtained at 2, 3, 4 and 5 T for 1.

Fig. S6 Magnetization versus HT^{-1} plots obtained at 2, 3, 4 and 5 T for **2**.

Fig. S7 Plot of $\ln(\chi_M'T)$ versus T^{-1} for **1**. (χ_M' is the real component of variabletemperature a.c. susceptibilities at 1 Hz and zero d.c. field). The solid line corresponds to a linear fit.

Fig. S8 Plot of $\ln(\chi_M'T)$ *vs.* T^{-1} for **2**. $(\chi_M'$ is the real component of variable-temperature a.c. susceptibilities at 1 Hz and zero d.c. field). The solid line corresponds to a linear fit.

Fig. S9 Variable-temperature a.c. susceptibilities of **1** in the range of 1–1000 Hz under zero applied d.c. field.

Fig. S10 Variable-temperature a.c. susceptibilities of **2** in the range of 1–1000 Hz under zero applied d.c. field.

Fig. S11 Cole-Cole plots at zero d.c. field for 1.

Fig. S12 Cole-Cole plots at zero d.c. field for 2.

S3. PXRD Patterns

Fig. S13 PXRD pattern of 1 compared with the simulated pattern from the single crystal data of 1.

Fig. S14 PXRD pattern of 2 compared with the simulated pattern from the single crystal data of 2.

S4. Tables

	1 Th1		1 1.5		DD	ТР	SAP
	1-101		1-102		(<i>D</i> _{2d})	(C_{2v})	(<i>D</i> _{4d})
а	O2–O4	2.8419(70)	09–011	2.8831(89)	1.199r	1.155r	1.215r
b	02–07	3.5778(91)	09–015	3.7050(63)	1.499r	1.449r	1.215r
d_1	04[02 07]05	29.920(19)	011[09 015]016	23.821(23)	29.5	0.0	0.0
d_2	03[01 06]08	33.687(22)	012[010 013]014	30.387(24)	29.5	21.8	0.0
d_3	04[01 07]08	32.188(24)	012[09 013]016	32.971(18)	29.5	48.2	52.4
d_4	03[02 06]05	26.880(22)	011[010 015]014	27.081(23)	29.5	48.2	52.4
f_1	03-04-06-07	0.584(16)	011-012-013-015	1.968(16)	0	14.1	24.5
f_2	05-08-02-01	2.012(17)	014-016-09-010	1.008(19)			
	2 Th 1				DD	ТР	SAP
	2-101		2-102		(D_{2d})	(C_{2v})	(<i>D</i> _{4d})
а	01–03	2.8485(44)	011-012	2.8121(41)	1.199r	1.155r	1.215r
b	01–05	3.4921(44)	011-09	3.4614(38)	1.499r	1.449r	1.215r
d_1	03[01 05]06	31.932(14)	012[011 09]014	31.545(13)	29.5	0.0	0.0
d_2	O4[O2 O16]O7	33.989(12)	013[015 08]010	32.183(11)	29.5	21.8	0.0
d_3	04[05 016]06	21.508(11)	013[015 09]014	25.633(11)	29.5	48.2	52.4
d_4	03[01 02]07	31.718(15)	012[011 08]010	26.129(12)	29.5	48.2	52.4
f_1	03-04-01-016	4.162(11)	012-013-011-015	2.338(85)	0	14.1	24.5
f_2	06-07-02-05	2.693(10)	010-014-09-08	2.592(12)			

Table S1 Semiquantitative method of polytopal analysis for 1 and 2^1

A[B C]D is the dihedral angle between the ABC plane and the BCD plane. A–B–C–D is the dihedral angle between the (AB)CD and AB(CD) plane, where (AB) signifies the midpoint of the AB edge.

1
3.320(7) / 2.425(7) / 161.89(2)
3.265(8) / 2.422(7) / 146.65(5)
3.427(8) / 2.554(1) / 156.79(1)
2
3.280(1) / 2.457(9) / 143.66(4)

Table S2 Interchain hydrogen bonds (Å) and the angles (°) for 1 and 2

<i>T</i> (K)	$\chi_{\rm S} ({\rm cm}^3{\rm mol}^{-1})$	$\chi_{\rm T}$ (cm ³ mol ⁻¹)	τ (s)	α
5.6	1.57296	3.20026	3.04×10 ⁻²	0.057
5.8	1.52530	2.92603	1.97×10^{-2}	0.046
6.0	1.47147	2.69931	1.29×10^{-2}	0.064
6.2	1.43045	2.49168	8.76×10^{-3}	0.057
6.4	1.39197	2.31651	5.90×10 ⁻³	0.056
6.6	1.35764	2.15914	4.23×10 ⁻³	0.042
6.8	1.3224	2.02747	2.91×10 ⁻³	0.048
7.0	1.29007	1.91185	2.12×10 ⁻³	0.049
7.2	1.25576	1.80821	1.55×10 ⁻³	0.042
7.4	1.22401	1.71594	1.13×10^{-3}	0.040
7.6	1.1958	1.63623	8.51×10^{-4}	0.045
7.8	1.16977	1.56410	6.47×10^{-4}	0.047
8.0	1.14109	1.49704	5.11×10^{-4}	0.030
8.2	1.12329	1.43985	3.97×10^{-4}	0.019
8.4	1.09590	1.38663	3.10×10 ⁻⁴	0.011
8.6	1.06363	1.33736	2.57×10^{-4}	0.018

 Table S3 The best results fitted for Cole-Cole plots of 1 by a generalized Debye model

 Table S4 The best results fitted for Cole-Cole plots of 2 by a generalized Debye model

<i>T</i> (K)	$\chi_{\rm S} ({\rm cm}^3{\rm mol}^{-1})$	$\chi_{\rm T}$ (cm ³ mol ⁻¹)	τ (s)	α
2.5	1.32196	14.94627	8.92×10 ⁻²	0.078
2.75	1.15341	11.85144	3.08×10^{-2}	0.149
3.0	1.18549	9.20818	1.28×10^{-2}	0.143
3.4	1.29182	6.84737	4.27×10 ⁻³	0.131
3.8	1.50227	5.56876	1.69×10^{-3}	0.099
4.2	1.75601	4.82711	7.78×10^{-4}	0.068
4.6	1.94537	4.35962	4.23×10^{-4}	0.042
5.0	1.99649	4.04789	2.01×10^{-4}	0.045

S5. Crystal Structures and a.c. Magnetic Property of [Tb(hfac)₃(NIT-5-ThienPh)₂]

Fig. S15 (a) Coordination polyhedron of the Tb^{III} ion in [Tb(hfac)₃(NIT-5-ThienPh)₂]. (b) Molecular structure of [Tb(hfac)₃(NIT-5-ThienPh)₂].

Fig. S16 Variable-temperature a.c. susceptibilities of $[Tb(hfac)_3(NIT-5-ThienPh)_2]$ under zero applied d.c. field.

S6. References

- (1) (a) L. Muetterties and L. J. Guggenberger, J. Am. Chem. Soc., 1974, 96,
- 1748-1756; (b) M. G. B. Drew, Coord. Chem. Rev., 1977, 24, 179-275.