Supporting Information

Photolysis of Tp'Rh(CNneopentyl)(PhNCNneopentyl) in the presence of ketones and esters: kinetic and thermodynamic selectivity for activation of different aliphatic C-H bonds

Astrid M. Parsons and William D. Jones*

Department of Chemistry, University of Rochester, Rochester, NY, 14627

Table of Contents

1.	¹ H NMR spectra of photolysis experiments	S2
2.	Plots of the reductive elimination of Tp'Rh(CNneopentyl)(R)(H) complexes	S 7
3.	Activation of Substrates Bearing C-Br Bonds	S18
4.	Summary of kinetic and thermodynamic selectivity	S20
5.	Gaussian Input	S22
6.	X, Y, Z Coordinates Used for BDE (DFT) Calculations	S22

1. ¹H NMR spectra of photolysis experiments

General Comments: Most photolysis experiments yielded more than one C-H activated product. Additionally, all photolysis experiments were accompanied by o-, m-, and p-carbodiimide C-H activation products (amounts vary from reaction to reaction). As a result, the ¹H NMR spectrum (0-8 ppm) is crowded with many overlapping peaks, making the assignment of any C-H activated products difficult. For this reason, only the hydride resonances will be reported. NOTE: * denotes o-, m-, and p-carbodiimide C-H activated products.

Activation of diethyl ketone

-13.0 -13.2 -13.4 -13.6 -13.8 -14.0 -14.2 -14.4 -14.6 -14.8 -15.0 -15.2 -15.4 -15.6 -15.8 ppm

Figure S1. ¹H NMR of hydride region for C-H activated diethyl ketone, **3a** δ -14.89 ($J_{\text{Rh-H}} = 24.0$ Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ -13.39). Products at δ -14.53, and -15.31 are assigned to diastereomers arising from α -CH₂ activation. The doublet at δ -14.81 is assigned to activation of an acetone impurity.

Activation of ethyl methyl ketone

Figure S2. ¹H NMR of hydride region for C-H activated ethyl methyl ketone, **3b** δ -14.79 ($J_{\text{Rh-H}}$ = 20.5 Hz) and **3b**' δ -14.90 ($J_{\text{Rh-H}}$ = 24.0 Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ -13.39 and -13.68). Products at δ -15.28 and -14.54 are assigned to diastereomers from α -keto CH₂ activation.

Activation of cyclopentanone

Figure S3. ¹H NMR of hydride region for C-H activated cyclopentanone, **3c** δ -14.82 ($J_{Rh-H} = 20.4$ Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ -13.90, -14.17, -14.18). Products at δ -15.19 ($J_{Rh-H} = 20.9$ Hz) and -15.29 ($J_{Rh-H} = 23.2$ Hz) were not assigned, but likely arise from β -keto C-H activation. The chemical shifts for these minor products are in the region seen for similar β -derivatives with chlorocyclopentane.¹

Activation of cyclopropyl methyl ketone

Figure S4. ¹H NMR of hydride region for C-H activated cyclopropyl methyl ketone, **3d** δ -15.02 (*J*_{Rh-H} = 19.5 Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ -13.90, -14.15, -14.16). Product at δ -15.17 was not assigned, but likely arise from cyclopropyl C-H activation.

¹ A. J. Vetter, R. D. Rieth, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2009, **131**, 10742–10752.

Activation of 4-phenyl-2-butanone

Figure S5. ¹H NMR of hydride region for C-H activated 4-phenyl-2-butanone, **3e** δ -15.17 (*J*_{Rh-H} = 19.5 Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ - 13.88, -14.12, -14.17). The product at δ -14.17 (*J*_{Rh-H} = 24.0 Hz) was assigned to an arene C-H activation product.

Activation of 4-chloro-2-butanone

Figure S6. ¹H NMR of hydride region for C-H activated 4-chloro-2-butanone, **3f** δ -15.16 (*J*_{Rh-H} = 19.5 Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ - 13.91, -14.15, -14.20). Product at δ -14.04 (*J*_{Rh-H} = 10.5 Hz) was assigned to Tp'Rh(CNR)HCl. The hydride doublet at δ -15.19 (*J*_{Rh-H} = 20.8 Hz) was not visible after 5 h, and could be due to α -keto CH₂ activation that leads to β -chlorine elimination.

Formation of Tp'Rh(CNR)(H)(Cl) in C₆D₁₂:

The identity of Tp'Rh(CNR)(H)(Cl) has been previously reported in C₆D₆ from the photolysis of **1** with 2-chloropropane.² In order to confirm the identity of δ -14.04 ($J_{Rh-H} = 10.5$ Hz) in the activation of 4-chloro-2-butanone, activation of 2-chloropropane in C₆D₁₂ was performed. Indeed, the chemical shift of Tp'Rh(CNR)(H)(Cl) generated from photolysis of **1** with 2-chloropropane is shifted in C₆D₁₂.

Figure S7. ¹H NMR of hydride region for C-H activated methyl acetate, **3g** δ -14.55 ($J_{Rh-H} = 20.2$ Hz) and **3g'** δ -14.50 ($J_{Rh-H} = 24.1$ Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ -13.39, -13.64, and -13.69).

² A. J. Vetter, W. D. Jones, *Polyhedron* **2004**, *23*, 413-417.

Activation of methyl butyrate

Figure S8. ¹H NMR of hydride region for C-H activated methyl butyrate, **3h** δ -14.54 ($J_{\text{Rh-H}} = 23.9$ Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ -13.39, -13.64, and -13.69).

Activation of dimethyl carbonate

Figure S9. ¹H NMR of hydride region for C-H activated dimethyl carbonate, **3i** δ -14.24 ($J_{\text{Rh-H}}$ = 24.1 Hz). Small quantities of *o*-, *m*-, and *p*-carbodiimide activation products were observed (δ - 13.39, -13.64, and -13.69).

2. Plots of the reductive elimination of Tp'Rh(CNneopentyl)(R)(H) complexes

Note: All hydride integrations were measured relative to hexamethyldisiloxane as an internal standard.

Figure S10. Reductive elimination of diethyl ketone (2a) from 3a at room temperature (24 °C) in C_6D_6 .

Figure S11. Kinetic data for the reductive elimination of diethyl ketone (2a) from 3a at room temperature (24 °C) in C₆D₆.

Figure S12. Reductive elimination of ethyl methyl ketone (2b) from 3b at room temperature (24 $^{\circ}$ C) in C₆D₆.

Figure S13. Kinetic data for the reductive elimination of ethyl methyl ketone (2b) from 3b at room temperature (24 °C) in C₆D₆.

Figure S14. Reductive elimination of ethyl methyl ketone (2b') from 3b' at room temperature (24 $^{\circ}$ C) in C₆D₆.

Figure S15. Kinetic data for the reductive elimination of ethyl methyl ketone (2b') from 3b' at room temperature (24 °C) in C_6D_6 .

Figure S16. Reductive elimination of cyclopentanone (2c) from 3c at 40 °C in C₆D₁₂.

Figure S17. Kinetic data for the reductive elimination of cyclopentanone (**2c**) from **3c** at 40 °C in C_6D_{12} .

Figure S18. Reductive elimination of cyclopropyl methyl ketone (2d) from 3d at 70 °C in C₆D₁₂.

Figure S19. Kinetic data for the reductive elimination of cyclopropyl methyl ketone (2d) from 3d at 70 °C in C₆D₁₂.

Figure S20. Reductive elimination of 4-phenyl-2-butanone (2e) from 3e at 70 °C in C₆D₁₂.

Figure S21. Kinetic data for the reductive elimination of 4-phenyl-2-butanone (2e) from 3e at 70 $^{\circ}$ C in C₆D₁₂.

Figure S22. Reductive elimination of 4-chloro-2-butanone (2f) from 3f at room temperature (24 °C) in C_6D_{12} .

Figure S23. Kinetic data for the reductive elimination of 4-chloro-2-butanone (2f) from 3f at room temperature (24 °C) in C₆D₁₂.

Figure S24. Reductive elimination of methyl acetate (2g) from 3g at 60 °C in C₆D₆.

Figure S25. Kinetic data for the reductive elimination of methyl acetate (2g) from 3g at 60 °C in C_6D_6 .

Figure S26. Reductive elimination of methyl acetate (2g') from 3g' at 60 °C in C₆D₆.

Figure S27. Kinetic data for the reductive elimination of methyl acetate (2g') from 3g' at 60 °C in C_6D_6 .

Figure S28. Reductive elimination of methyl butyrate (2h) from 3h at 60 °C in C₆D₆.

Figure S29. Kinetic data for the reductive elimination of methyl butyrate (2h) from 3h at 60 °C in C_6D_6 .

Figure S30. Reductive elimination of dimethyl carbonate (2i) from 3i at 60 °C in C₆D₆.

Figure S31. Kinetic data for the reductive elimination of dimethyl carbonate (2i) from 3i at 60 °C in C₆D₆.

3. Activation of Substrates Bearing C-Br Bonds

Activation of 1-bromo-2-butanone

The reaction was setup in a nitrogen filled glovebox. To an oven-dried 1-dram vial was added 1 (35.0 mg, 0.050 mmol). Next, 1.0 mL of 1-bromo-2-butanone was added and the reaction mixture was capped. The sample was removed from the glovebox and irradiated at 0 °C for 15 min. After 15 min, the reaction mixture was removed from the ice bath and brought inside the glovebox. Bromoform (0.25 mL, 2.8 mmol) and a Teflon-coated stir-bar were added and the reaction mixture was stirred overnight. The reaction was concentrated *in vacuo* and the resulting residue was purified by column chromatography (7:3 hexane: ethyl acetate, $R_f = 0.47$) to afford **5** as a yellow solid (21 mg, 67% yield).

¹H NMR (400 MHz; C₆D₆): δ 5.57 (s, 1H), 5.51 (s, 2H), 3.29 (s, 3H), 2.77 (s, 2H), 2.76 (s, 6H), 2.12 (s, 3H), 2.03 (s, 6H), 0.86 (s, 1H), 0.85 (s, 9H).

Activation of 3-bromo-2-butanone

The reaction was setup in a nitrogen filled glovebox. To an oven-dried 1-dram vial was added 1 (35.0 mg, 0.050 mmol). Next, 1.0 mL of 3-bromo-2-butanone was added and the reaction mixture was capped. The sample was removed from the glovebox and irradiated at 0 °C for 15 min. After 15 min, the reaction mixture was removed from the ice bath and brought inside the glovebox. Bromoform (0.25 mL, 2.8 mmol) and a Teflon-coated stir-bar were added and the reaction mixture was stirred overnight. The reaction was concentrated *in vacuo* and the resulting residue was purified by column chromatography (7:3 hexane: ethyl acetate, $R_f = 0.49$) to afford **5** as a yellow solid (25 mg, 76% yield).

¹H NMR (400 MHz; C₆D₆): δ 5.57 (s, 1H), 5.51 (s, 2H), 3.29 (s, 3H), 2.77 (s, 2H), 2.76 (s, 6H), 2.12 (s, 3H), 2.03 (s, 6H), 0.86 (s, 1H), 0.85 (s, 9H).

Figure S32. ¹H NMR analysis of Tp'Rh(CNneopentyl)Br₂.

4. Summary of Kinetic and Thermodynamic Selectivity

Reactions were setup in a nitrogen filled glovebox. To an oven-dried 5 mm J Young NMR tube was added 1 (6.9 mg, 0.010 mmol). Next, benzene (0.25 mL) and substrate (0.25 mL) were added and the NMR tube was capped. The sample was removed from the glovebox and irradiated at 0 °C for 5 minutes. After 5 minutes, the reaction was removed from the ice bath and the integrated area ratio (benzene: substrate) was determined by ¹H NMR spectroscopy.

entry	benzene:	integrated area ratio	substrate ratio	k_{1}/k_{2}^{c}
	substrate	(I_2/I_1)	$(n_1/n_2)^b$	
1	benzene: 2a	1.63	0.84	1.37(7)
2	benzene: 2b	1.97	1.00	1.97(10)
3	benzene: 2b'	1.77	1.00	1.67(9)
4	benzene: 2c	20.64	1.01	20.85(104)
5	benzene: 2d	11.15	0.90	10.06(50)
6	benzene: 2e	4.09	0.60	2.44(12)
7	benzene: 2f	-	-	-
8	benzene: 2g	5.42	1.13	6.11(31)
9	benzene: 2g'	7.51	1.13	7.51(38)
10	benzene: 2h	22.09	0.79	17.36(87)
11	benzene: 2i	3.03	1.06	3.21(15)

Table S1. Kinetic Selectivity Data^a

^{*a*}Each sample was irradiated for 5 minutes at 0 °C. ^{*b*}The substrate ratio was determined from added amounts in mmol. ^{*c*}Errors in rate ratio estimated at 5% for proton NMR integrations.

NOTE: Attempts to obtain kinetic selectivity data for 4-chloro-2-butanone were unsuccessful.

Table S2. Summary of Thermodynamic Data (All values are in kcal/mol)

Data for plot of M-R vs R-H bond strengths-Tp'Rh(CNneopenthyl)(R)(H)

 $D_{\rm rel}(\rm R-H) = [\Delta H(\rm Rh-R) - \Delta H(\rm Rh-Ph)] = \Delta G^{\circ} + \rm RT \ln(6/\#\rm H) + [\Delta H(\rm R-H) - \Delta H(\rm Ph-H)]$

 $\Delta G^{\circ} \approx \Delta H^{\circ}$ - RT ln(6/#H)

 $\Delta S^{\circ} \approx \text{R} \ln(6/\#\text{H})$

$$\Delta G^{\circ} = [\Delta H(Rh-R) + \Delta H(Ph-H)] - [\Delta H(R-H) + \Delta H(Rh-Ph)] - RT \ln(6/\#H)$$

$\Delta G^{\circ} = [\Delta H(Rh-R) -$	$-\Delta H(Rh-Ph)$]	– [ΔH(R-H) –	- ΔH(Ph-H)] ·	– RT ln(6/#H)
--	----------------------	--------------	---------------	---------------

Product	$D(R-H)^a$	$\Delta\Delta G_{\mathrm{oa}}^{\dagger}\mathrm{vs}$	$\Delta G_{ m re}^{ m \dagger}$	Tre(R-H)	ΔG^{\bullet} vs	# H	Drel(M-R)
		\mathbf{PhH}^{b}		(K)	PhH		
phenyl	112.9	0	27.61	303	0	6	0
$CH_2C(=O)CH_3$	96.0	0.71	27.71	343	0.21	6	-17.1
3 a	98.34	0.17	23.88	297	3.97	6	-18.1
3 b	91.34	0.31	25.57	297	2.42	3	-23.7
3b'	98.94	0.37	23.84	297	4.21	3	-17.8
3c	85.34	1.65	25.49	313	3.67	4	-30.8
3d	91.22	1.25	28.19	343	0.27	3	-21.5
3 e	90.22	0.48	28.45	343	-0.76	3	-21.5
3 f	90.67	-	24.29	298	-	3	-
3g	93.59	0.98	28.21	333	0.08	3	-19.0
3g'	95.95	1.09	27.63	333	0.77	3	-17.3
3h	94.63	1.55	27.61	333	1.25	3	-19.1
3i	96.83	0.63	28.34	333	-0.40	6	-15.7

^{*a*}All hydrocarbon C-H bond strengths were calculated using B3LYP/6-311g.

5. Gaussian Input

%mem=1500mb %chk=/scratch/aolivare/diethylketone.chk %NProcShared=12 #n B3LYP/6-311g opt freq scf=(maxcycles=10000) nosymm diethylketone 01 С 0.08620690 -0.09852217 0.00000000 0 0.71324555 0.99252716 0.00210835 С 0.85356407 -1.43372364 0.00000000 н 0.15663780 -2.24562923 -0.00176057 н 1.46993096 -1.49086305 -0.87276969 С -1.45379093 -0.09852092 -0.00258904 Н -1.80898766 -0.60215948 -0.87727953 Н -1.81192521 -0.60368694 0.87002034 С -1.96712476 1.35340478 -0.00218280 н -1.61194137 1.85719497 0.87242579 н -1.60914647 1.85853922 -0.87487446 Н -3.03712338 -0.00389446 1.35322509 С 1.73686620 -1.51814950 1.25866978 н 1.37538060 2.09672591 -2.51903889 2.56670399 1.15749397 Н -0.85029271 н 1.16089132 -1.24377638 2.11766473

6. X, Y, Z Coordinates Used for BDE (DFT) Calculations

Substrate 2a			
С	0.08620690	-0.09852217	0.00000000
0	0.71324555	0.99252716	0.00210835
С	0.85356407	-1.43372364	0.00000000
Н	0.15663780	-2.24562923	-0.00176057
Н	1.46993096	-1.49086305	-0.87276969
С	-1.45379093	-0.09852092	-0.00258904
Н	-1.80898766	-0.60215948	-0.87727953
Н	-1.81192521	-0.60368694	0.87002034
С	-1.96712476	1.35340478	-0.00218280
Н	-1.61194137	1.85719497	0.87242579
Н	-1.60914647	1.85853922	-0.87487446
Н	-3.03712338	1.35322509	-0.00389446
С	1.73686620	-1.51814950	1.25866978
Н	2.09672591	-2.51903889	1.37538060
Н	2.56670399	-0.85029271	1.15749397

Substrate 2b'

Н

С	1.83497538	-0.44334975	0.00000000
0	2.46201404	0.64769958	0.00210835
С	0.29497756	-0.44334850	-0.00258904
Н	-0.06021918	-0.94698707	-0.87727953
Н	-0.06315673	-0.94851452	0.87002034
Н	-0.06168945	0.56545702	-0.00230678
С	2.60233255	-1.77855122	0.0000000
Н	2.34105017	-2.34008676	0.87253043
Н	2.34441077	-2.33815538	-0.87476828
С	4.11695525	-1.50014916	0.00322082
Н	4.37486127	-0.94046022	0.87793951
Н	4.65011834	-2.42785446	0.00331974
Н	4.37825342	-0.93869768	-0.86935897

Substrate 2b'

Н

Same coordinates as **2b** above.

Substrate 2c С -0.91059599 -0.06622516 0.00000000 С 0.61126201 -0.06622516 0.00000000 С 1.08003501 1.38163984 0.00000000 С -1.379801991.37809484 -0.10359000 Н -1.30255799-0.66867016 -0.85750800 Н -1.30071099-0.53663616 0.93750400 Н 0.99988901 -0.60082316 -0.90328000 Н 1.00462901 -0.60695716 0.89683700 Н 1.62697001 1.61333284 0.94858800 Н 1.79199601 1.56481584 -0.84321600 Н -2.03217999 0.76707400 1.63989684 Н -1.99154799 1.52571684 -1.02879300 С -0.14770499 2.27120784 -0.13318600 0 -0.14442610 3.52404496 -0.25133398 Substrate 2d С -0.62913904 -0.44701986 0.00000000 С 0.87197596 -0.44701986 0.00000000 С 0.12139096 0.85295514 0.00000000 Н -1.16573504-0.75689486 -0.91385800 Н -1.16573504-0.75689486 0.91385800 Н 1.40853696 -0.75678686 -0.91388800 Н 1.40853696 -0.75678686 0.91388800 Н 0.12116796 1.47248314 0.91394400 С 0.12107992 1.71704808 -1.27473263 0 0.12119782 2.97252663 -1.18903462С 0.12062305 1.04240066 -2.65909193

0.99409341

0.43249541

-2.75891734

Н	-0.75320951	0.43295694	-2.75856560
н	0.12066780	1.79300135	-3.42165249
Substrate 2e			
С	0.72847679	-0.54635761	0.0000000
0	1.35551722	0.54469069	-0.00211561
С	-0.81152321	-0.54635761	0.00000000
Н	-1.16818956	-0.04348018	-0.87453039
Н	-1.16818956	-1.55516186	0.00176083
Н	-1.16819007	-0.04043076	0.87276960
C	1,49583396	-1.88155657	0.00258904
н	1 23616436	-2 44047020	0 87728170
н	1 23629725	-2 1/378195	-0 87001816
C	3 010/5075	-2.44576155	0.0001010
	2 26000144	1 04000102	0.00217050
п	2 27012420	1 044090193	0.074/0009
	2 777012420	-1.04420455	-0.0/200/0
	5.///81024	-2.93835228	0.00480827
	4.12616980	-3.54503952	-1.2022/5/4
C	4.1246/821	-3.54111614	1.21390324
C	4.82063703	-4./5455/02	-1.20016997
Н	3.85189049	-3.06996503	-2.15533234
C	4.82022093	-4.75050649	1.21618267
Н	3.85035613	-3.06299951	2.16536575
С	5.16810905	-5.35734508	0.00942760
Н	5.09469767	-5.23313008	-2.15156636
Н	5.09393306	-5.22532015	2.16965416
Н	5.71572272	-6.31097688	0.01083793
Substrate 2f			
<u>C</u>	0.01655629	-0.94362773	-0.01235276
0	0.64359495	0.14742160	-0.01024441
C	0.78391346	-2.27882920	-0.01235276
H	0.08698587	-3.09073555	-0.01235263
н	1 39895899	-2 33672801	-0 88600414
н	1 39895907	-2.33672855	0 86129852
C		-0 01362618	-0 01/0/180
L L	-1 97963997	-0.94302048	-0.01494180
	1 00157652	1 11006600	-0.00921339
H C	-1.0010/000	-1.44800089	0.01574170
	-2.03077334	0.50829977	-0.015/41/9
н	-1.6/836998	1.01283486	-0.88860568
H	-1.68184425	1.01256980	0.85869350
CI .	-3./96/6986	0.50830037	-0.01924073
Substrate 2g			
С	1.58866996	-0.71422449	-0.00934971
0	2.21571039	0.37682380	-0.01146532
С	0.04866996	-0.71422449	-0.00934971
Н	-0.30799639	-1.22030363	-0.88203122
Н	-0.30799639	-1.21694906	0.86526857

Н	-0.30799689	0.29457925	-0.01128648
С	3.87065293	-1.77102031	-0.00738602
Н	4.13030372	-1.20874927	0.86515782
Н	4.40381621	-2.69872380	-0.00560887
Н	4.13020828	-1.21215198	-0.88214152
0	2.35602713	-2.04942346	-0.00676068

Same coordinates as **2g** above.

Substrate 2h			
С	1.80463568	-1.05951183	-0.01386977
0	2.43167611	0.03153851	-0.01386977
0	2.51718162	-2.29934177	-0.01386977
С	1.58631920	-3.38488088	-0.01386977
Н	2.11994772	-4.31231648	-0.01582603
Н	0.97253145	-3.32839367	0.86075803
Н	0.96995929	-3.32618868	-0.88654134
С	0.26463568	-1.05951183	-0.01386977
Н	-0.09203067	-1.56356997	-0.88772017
Н	-0.09203067	-1.56425918	0.85958271
С	-0.24869792	0.39241388	-0.01329707
Н	0.10945702	0.89768687	-0.88583603
Н	0.10647890	0.89594527	0.86146322
С	-1.78869569	0.39241493	-0.01592135
Н	-2.14684946	-0.11318219	0.85643031
Н	-2.14536318	1.40122002	-0.01514960
Н	-2.14387242	-0.11079232	-0.89086818
Substrate 2i			
C	1.05960260	-0.84437085	0.00000000
0	1.68664303	0.24667950	0.0000000
0	1.77214854	-2.08420079	0.00000000
0	-0.37039740	-0.84437085	0.00000000
С	0.84128612	-3.16973990	0.00002588
Н	0.23887503	-3.12302936	-0.88304773
Н	1.37477798	-4.09705785	0.01920544
Н	0.21368621	-3.10138867	0.86393933
С	-0.84774121	-0.55505496	-1.31656341
Н	-1.77800286	-1.05870128	-1.47735408
Н	-0.99094002	0.50024905	-1.42013730
Н	-0.13145390	-0.89023164	-2.03731932
Substrate 2a•			
С	0.08620690	-0.09852217	0.0000000
0	0.71324555	0.99252716	0.00210835
С	0.85356407	-1.43372364	0.0000000
Н	0.15663780	-2.24562923	-0.00176057
Н	1.46993096	-1.49086305	-0.87276969

С	-1.45379093	-0.09852092	-0.00258904
Н	-1.80898766	-0.60215948	-0.87727953
Н	-1.81192521	-0.60368694	0.87002034
С	-1.96712476	1.35340478	-0.00218280
Н	-1.61194137	1.85719497	0.87242579
Н	-1.60914647	1.85853922	-0.87487446
Н	-3.03712338	1.35322509	-0.00389446
С	1.73686620	-1.51814950	1.25866978
Н	2.09672591	-2.51903889	1.37538060
н	1.16089132	-1.24377638	2.11766473
Substrate 2b'•			
С	1.83497538	-0.44334975	0.00000000
0	2.46201404	0.64769958	0.00210835
C	0.29497756	-0.44334850	-0.00258904
H	-0.06021918	-0.94698707	-0.87727953
н	-0.06315673	-0.94851452	0.87002034
C	2 60233255	-1 77855122	0.07002031
н	2.302252255	-2 34008676	0.00000000
н	2.34103017	-2.33815538	-0 87476828
C	1 11605525	-1 5001/016	0.00377082
L L	4.11095525	-0.04046022	0.00522082
Ц	4.57480127	-0.94040022	0.07795951
н	4.03011034	-2.42/0J440 0 02960769	0.00331974
п	4.57625542	-0.93809708	-0.80555657
Substrate 2b•			
С	1.83497538	-0.44334975	0.00000000
0	2.46201404	0.64769958	0.00210835
С	0.29497756	-0.44334850	-0.00258904
Н	-0.06021918	-0.94698707	-0.87727953
Н	-0.06315673	-0.94851452	0.87002034
Н	-0.06168945	0.56545702	-0.00230678
С	2.60233255	-1.77855122	0.0000000
Н	2.34105017	-2.34008676	0.87253043
Н	2.34441077	-2.33815538	-0.87476828
С	4.11695525	-1.50014916	0.00322082
Н	4.37486127	-0.94046022	0.87793951
н	4.65011834	-2.42785446	0.00331974
Substrate 2c•			
<u> </u>	-0 91059599	-0 06622516	a aaaaaaaa
C	0.51055555	-0.06622516	0.00000000
C	1 02003501	1 28162081	0.00000000
C C	_1 37000100	1 37800/8/	-0 10350000
Ч	-1 20255700	-0 66867016	-0.10339000
н Ц	-1 30071000	-0.0000/010	0.03750100
Ц	0 0000001 -1.3001 (099	-0.0000016	0.93730400
	10000000	-0.00002310	-0.90320000
-	1 00162001	-0 60605716	0 00602700
п	1.00462901	-0.60695716	0.89683700

Н	-2.03217999	1.63989684	0.76707400
Н	-1.99154799	1.52571684	-1.02879300
С	-0.14770499	2.27120784	-0.13318600
0	-0.14442610	3.52404496	-0.25133398
Substrate 2d•	0 62012004	0 44701000	0.0000000
C	-0.62913904	-0.44/01986	0.00000000
C	0.8/19/596	-0.44/01986	0.00000000
	0.12139096	0.85295514	0.00000000
H	-1.165/3504	-0.75689486	-0.91385800
H	-1.165/3504	-0.75689486	0.91385800
H	1.40853696	-0./56/8686	-0.91388800
H	1.40853696	-0./56/8686	0.91388800
H	0.12116/96	1.4/248314	0.91394400
C	0.1210/992	1./1/04808	-1.2/4/3263
0	0.12119/82	2.9/252663	-1.18903462
C	0.12062305	1.04240066	-2.65909193
Н	0.99409341	0.43249541	-2.75891734
Н	-0.75320951	0.43295694	-2.75856560
Substrate 2e•			
<u> </u>	0 72817679	-0 51635761	0 00000000
0	1 35551722	0.51169069	-0 00211561
C	-0 81152321	-0 5/635761	0.00211301
Ц	-1 16818956	-0.04000701	-0 87/53039
н Ц	-1 16212056	-0.04348018	0.07455055
C	1 /0583306	-1.88155657	0.00170003
ц	1 23616/36	-2 110015057	0.00230304
н Ц	1 23620725	-2.4404/020	-0 87001816
C	3 010/5975	-2.44576155	0.07001010
Ц	3 269991//	-1 0/090193	0.0021/050
н Ц	3 27013420	-1.04090193	-0 87253073
C	3 77781624	-2 93835228	0.07255075
C	1 12616980	-3 5/503952	-1 2022757/
C C	4.12010500	-3 5/11161/	1 21390327
C C	4.12407021	- 1 75/55702	_1 20016007
ц	3 851808/0	-3 06006503	-2 15532234
C	1 82022093	-1 750506/19	1 21618267
Ц	3 85035613	-3 06299951	2 16536575
	5 16810005	-5 35734508	0 00012760
	5.10010903	- J.	2 15156626
n L	5.09409707	- J. 23513000	2.15150050
п	5 7157077	-6 31007688	0 01003410
11	5.71572272	-0.51097088	0.01085795
Substrate 2f•			
С	0.01655629	-0.94362773	-0.01235276
0	0.64359495	0.14742160	-0.01024441
С	0.78391346	-2.27882920	-0.01235276
Н	0.08698587	-3.09073555	-0.01235263

Н	1.39895907	-2.33672855	0.86129852
С	-1.52344153	-0.94362648	-0.01494180
Н	-1.87863897	-1.44799105	-0.88921359
Н	-1.88157653	-1.44806689	0.85808695
С	-2.03677334	0.50829977	-0.01574179
Н	-1.67836998	1.01283486	-0.88860568
Н	-1.68184425	1.01256980	0.85869350
C1	-3.79676986	0.50830037	-0.01924073
Substrate 2σ •			
	1 58866006	-0 71/22//0	-0 0003/071
0	2 21571030	0.37683380	-0.000004071
C C	0 04966006	0.37082380	0.001140332
	0.04000990	1 22020262	-0.00954971 0.00002100
п	-0.30799039	1 21604006	-0.00203122 0.00205122
		-1.21094900	0.00320037
	2.8/002293	-1.//102031	-0.00/38002
н	4.13030372	-1.208/492/	0.80515782
н	4.40381621	-2.698/2380	-0.00560887
H	4.13020828	-1.21215198	-0.88214152
0	2.35602/13	-2.04942346	-0.000/6068
~ 1			
Substrate 2g'•			
С	1.58866996	-0.71422449	-0.00934971
0	2.21571039	0.37682380	-0.01146532
С	0.04866996	-0.71422449	-0.00934971
Н	-0.30799639	-1.22030363	-0.88203122
Н	-0.30799639	-1.21694906	0.86526857
Н	-0.30799689	0.29457925	-0.01128648
С	3.87065293	-1.77102031	-0.00738602
Н	4.13030372	-1.20874927	0.86515782
Н	4.40381621	-2.69872380	-0.00560887
0	2.35602713	-2.04942346	-0.00676068
Substrate 2h•			
С	1.80463568	-1.05951183	-0.01386977
0	2.43167611	0.03153851	-0.01386977
0	2,51718162	-2.29934177	-0.01386977
C	1.58631920	-3.38488088	-0.01386977
H	0.97253145	-3.32839367	0.86075803
Н	0.96995929	-3.32618868	-0.88654134
C	0.26463568	-1.05951183	-0.01386977
H	-0.09203067	-1.56356997	-0.88772017
Н	-0.09203067	-1.56425918	0.85958271
C	-0.24869792	0.39241388	-0.01329707
- H	0.10945702	0.89768687	-0.88583603
H	0.10647890	0.89594527	0.86146322
C	-1.78869569	0.39241493	-0.01592135
- H	-2.14684946	-0.11318219	0.85643031
Н	-2.14536318	1.40122002	-0.01514960
••		2	0.0101.000

Н	-2.14387242	-0.11079232	-0.89086818
Substrate 2i•			
С	1.05960260	-0.84437085	0.0000000
0	1.68664303	0.24667950	0.0000000
0	1.77214854	-2.08420079	0.0000000
0	-0.37039740	-0.84437085	0.0000000
С	0.84128612	-3.16973990	0.00002588
Н	0.23887503	-3.12302936	-0.88304773
Н	1.37477798	-4.09705785	0.01920544
Н	0.21368621	-3.10138867	0.86393933
С	-0.84774121	-0.55505496	-1.31656341
Н	-1.77800286	-1.05870128	-1.47735408
Н	-0.13145390	-0.89023164	-2.03731932

Hvdrogen atom H•	
------------------	--

ப	
п	

3.43167708

-2.06521736 0.0000000