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I - NMR Spectra
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Figure S1. "H NMR spectrum of [Ru(Cp)(P"®*,N™,)(MeCN)]PF; (1d) in CD,ClL.
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Figure S2. “C{'H} NMR spectrum of [Ru(Cp)(P"®*,N"",)(MeCN)]PF; (1d) in CD,Cl.
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Figure S3.*'P{'H} NMR spectrum of [Ru(Cp)(P*®*,N"™,)(MeCN)]PF; (1d) in CD,Cl.
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Figure S4. "H NMR spectrum of [Ru(Cp*)(P™,N®",)(MeCN)]PFs (2a) in CD,Cl,.
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Figure S5. “C{'H} NMR spectrum of [Ru(Cp*)(P"",N®")(MeCN)]PE; (2a) in CD-Cl,.
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Figure S6.*'P{'H} NMR spectrum of [Ru(Cp*)(P™,N®")(MeCN)]PFs (2a) in CD,Cl,.
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Figure S7. "H NMR spectrum of [Ru(Cp*)(P®*,N,)(MeCN)]PFs (2d) in CD,CL.
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Figure S8. “C{'H} NMR spectrum of [Ru(Cp*)(P*,N"",)(MeCN)]PF4 (2d) in CD,ClL,.
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Figure S9. *'P{'H} NMR spectrum of [Ru(Cp*)(P*,N™,)(NCMe)]PFs (2d) in CD,CL.
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Figure $10. '"H NMR spectrum of [Ru(Cp)(P®"2N®",)(MeCN)]PFs (1¢) in CD,Cl,.
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Figure S11.*'P{'"H} NMR spectrum of [Ru(Cp)(P*",N"")(MeCN)]PFs (1¢) in CD,Cl,.
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Figure S12. '"H NMR stack plot of [Ru(Cp)(P*",N®",)(MeCN)]PF; (1¢) in CD,Cl, at: a) 25 °C;
b) 0 °C; ¢) —25°C; d) — 50 °C; e) — 75 °C; and f) — 90 °C.
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Figure S13. *'P{'H} NMR stack plot of [Ru(Cp)(P®*"2N®",)(MeCN)]PFs (1¢) in CD,Cl, at: a) 25
°C;b)0°C;c)—25°C;d)—50°C;e)—75°C; and f) — 90 °C.
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IT - IR Spectra
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Figure S14. An ATR-FTIR spectrum of solid [Ru(Cp)(P*",N"",)(NCMe)]PFs (1¢) collected with
a PerkinElmer UATR Two FT-IR Spectrum Two.
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Figure S15. An ATR-FTIR spectrum of solid [Ru(Cp)(P"®",N™,)(NCMe)]PE; (1d) collected
with a PerkinElmer UATR Two FT-IR Spectrum Two.
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Figure $16. An ATR-FTIR spectrum of solid [Ru(Cp*)(P"",N®")(NCMe)]PF; (2a) collected
with a PerkinElmer UATR Two FT-IR Spectrum Two.
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Figure S17. An ATR-FTIR spectrum of solid [Ru(Cp*)(P®",N"",)(NCMe)]PFs (2d) collected
with a PerkinElmer UATR Two FT-IR Spectrum Two.
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III - MALDI Mass Spectrometry Data
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Figure $18. MALDI-TOF mass spectrum of [Ru(Cp)(P®",N®",)(MeCN)]PF; (1¢) with pyrene as
the matrix (1:20 ratio).
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Figure S19. Zoom-in (top) of the observed signal with m/z = 677.2 in the MALDI-TOF mass
spectrum of [Ru(Cp)(PP",N®",)(MeCN)]PF; (1¢); and simulation'"! (bottom) of the isotope
pattern for the fragment cation [Ru(Cp)(P*",N"")]" with m/z = 677.2.
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Figure S20. MALDI-TOF mass spectrum of [Ru(Cp)(PtBuzNth)(MeCN)]PF6 (1d) with pyrene as
the matrix (1:20 ratio).
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Figure S21. Zoom-in (top) of the observed signal with m/z = 581.2 in the MALDI-TOF mass
spectrum of [Ru(Cp)(PtBuzNth)(MeCN)]PF6 1d); and simulation'! (bottom) of the isotope
pattern for the fragment cation [Ru(Cp)(P",2N"")]" with m/z = 581.2.
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Figure S22. MALDI-TOF mass spectrum of [Ru(Cp*)(PthNBng)(MeCN)]PF6 (2a) with pyrene
as the matrix (1:20 ratio).
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Figure S23. Zoom-in (top) of the observed signal with m/z = 719.2 in the MALDI-TOF mass
spectrum of [Ru(Cp*)(PPhZNan)(MeCN)]PF6 (2a); and simulation'" (bottom) of the isotope
pattern for the fragment cation [Ru(Cp*)(P™,N®")]" with m/z = 719.2.
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Figure S24. MALDI-TOF mass spectrometry of [Ru(Cp*)(PtBuzNth)(MeCN)]PF6 (2d) with
pyrene as the matrix (1:20 ratio).
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Figure S25. Zoom-in (top) of the observed signal with m/z = 651.3 in the MALDI-TOF mass

spectrum of [RU(CP*)(PtBu2NPh2)(MCCN)]PF6 (2d); and simulation!" (bottom) of the isotope
pattern for the fragment cation [Ru(Cp*)(P®",2N"")]" with m/z = 651.3.
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IV- Magnetization Transfer Experiments
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Figure S26. 'H NMR spin-saturation transfer plot; relative integration for bound acetonitrile on
[Ru(Cp)(PPh2NB“2)(MeCN)]PF6 (1a) after saturating uncoordinated MeCN, as a function of
saturation delay time (25 °C, CD,Cl,).
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Figure S27. 'H NMR spin-saturation transfer plot; relative integration for bound acetonitrile on
[Ru(Cp*)(PPh2NB“2)(MeCN)]PF6 (2a) after saturating uncoordinated MeCN, as a function of
saturation delay time (25 °C, CD,Cl,).
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V — Catalytic Data

100
90
80

70 1
60 L

50
40
30
20
10

0

Isochromene (%)

0 5 10 15 20 25
Time (h)

Figure S28. Cyclization of 2-ethynylbenzyl alcohol (150 mM) at 55 °C in THF with 0.5 mol%
[Ru(Cp)(P®*,N™,)(MeCN)]PF; (1d — blue), [Ru(Cp*)(P*",NB",)(MeCN)]PF; (2a — purple) and
[Ru(Cp*)(PtBuzNth)(MeCN)]PR (2¢ — red). Amounts were determined by GC-FID by area count
of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data

points represent the average of the two runs and the error bars give the span of the conversion
values of each data set.
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Figure S29. Cyclization of 2-ethynylaniline (150 mM) at 55 °C in THF with 0.1 (dashed) and
0.5 (solid) mol% of catalysts [Ru(Cp)(P®',N"")(MeCN)]JPFs (1d — blue) and
[Ru(Cp*)(PtBuzNth)(MeCN)]PR (2d — red). Amounts were determined by GC-FID by area
count of calibrated signals relative to an internal standard. Reactions were conducted in
duplicate. Data points represent the average of the two runs and the error bars give the span of
the conversion values of each data set.
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Figure S30. Cyclization of 2-ethynylaniline (150 mM) at 40 °C in THF with 0.5 mol%
[Ru(Cp)(P®",N™,)(MeCN)]PFs (1d — blue) and [Ru(Cp*)(P®',N")(MeCN)IPFs (2d — red).
Amounts were determined by GC-FID by area count of calibrated signals relative to an internal
standard. Reactions were conducted in duplicate. Data points represent the average of the two
runs and the error bars give the span of the conversion values of each data set.
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VI - Crystallographic Details

Data Collection and Processing. The sample of 2d was mounted on a Mitegen polyimide
micromount with a small amount of Paratone N oil. All X-ray measurements were made on a
Bruker Kappa Axis Apex2 diffractometer at a temperature of 110 K. The unit cell dimensions
were determined from a symmetry constrained fit of 9997 reflections with 5.12° <2 6 < 60.32°.
The data collection strategy was a number of w and ¢ scans which collected data up to 48.5°
(26). The frame integration was performed using SAINT.”! The resulting raw data was scaled

and absorption corrected using a multi-scan averaging of symmetry equivalent data using
SADABS."!

Structure Solution and Refinement. The structure for 2d was solved by using a dual space
methodology using the SHELXT program.”*! All non-hydrogen atoms were obtained from the
initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to
ride on the parent atom. The structural model was fit to the data using full matrix least-squares
based on F”. The calculated structure factors included corrections for anomalous dispersion from
the usual tabulation. The structure was refined using the SHELXL program from the SHELXTL
suite of crystallographic software.”! Graphic plots were produced using the SHELXL XP
program suite.!
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Figure S31. ORTEP drawing of 2d showing naming and numbering scheme. Ellipsoids are at
the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S33. ORTEP drawing of 2d. Ellipsoids are at the 50% probability level and hydrogen
atoms were omitted for clarity.
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Table S1. Summary of crystal data for 2d.

Formula CseHs4FeN3P3Ru
CCDC 1891141
Formula Weight (g/mol) 836.80

Crystal Dimensions (mm ) 0.380 x 0.047 x 0.031
Crystal Color and Habit colourless needle
Crystal System monoclinic
Space Group P2i/c
Temperature, K 110

a, A 10.021(5)

b, A 19.421(9)

c, A 19.200(10)

a,° 90

B.° 92.243(14)

v,° 90

v, A° 3734(3)

Number of reflections to determine final unit cell 9997

Min and Max 26 for cell determination, ° 5.12,60.32

Z 4

F(000) 1736

o (g/cm) 1.489

A, A, (MoKa) 0.71073

w, (em™) 0.609
Diffractometer Type Bruker Kappa Axis Apex2
Scan Type(s) ¢ and w scans
Max 26 for data collection, ° 48.5

Measured fraction of data 0.998

Number of reflections measured 65667

Unique reflections measured 6050

Rimerge 0.0499

Number of reflections included in refinement 6050
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Cut off Threshold Expression I1>20(])

Structure refined using full matrix least-squares using F

Weighting Scheme w=1/[0*(F0?)+(0.0520P)*+11.8552
P] where P=(Fo*+2Fc?)/3

Number of parameters in least-squares 454

R, 0.0459

wR; 0.1138

R, (all data) 0.0557

wR; (all data) 0.1190

GOF 1.088

Maximum shift/error 0.001

Min & Max peak heights on final AF Map (e/A) -0.833, 0.931

Where:

R1:Z( |F0| - |Fc|)/ZFo
WRy = [ S(w(F,"-FZ ) )/ JwF.*) 1"
GOF =[ 3( w( F," - F*)*) / (No. of reflns. - No. of params. ) ]
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