A Dicopper(I)-Dimesoionic Carbene Complex as a Click Catalyst: Mechanistic Implications

Julia Beerhues,^a Kevin Fauché,^b Federico Cisnetti,^b Biprajit Sarkar,^{*a} Arnaud Gautier^{*b}

Abstract:

A dimesoionic carbene and acetate-bridged dicopper(I) complex is synthesized and fully characterized. This complex is a potent pre-catalyst for the azide-alkyne cycloaddition reaction. A full kinetic investigation shows a first order in azide and a catalyst order inferior to one due to an equilibrated dimerization of the catalyst.

Table of contents.

Experimental Section	2
NMR Spectra	3
Single-Crystal X-Ray Diffraction Data & Crystal Structure.	5
Catalysis	9
Substrate Scope & Screening	9
Rate low	11
Re-calculation of the kinetics curves using calculated k and Ke values	12

Experimental Section

Figure S3: ¹H NMR spectrum of [1]OTf in CD₂Cl₂.

Figure S4: ¹³C NMR spectrum of [**1**]OTf in CD₂Cl₂.

Single-Crystal X-Ray Diffraction Data & Crystal Structure. Table S5: Crystallographic details for [**1**]OTf.

	[[1]OTf · 0.5 CH ₂ Cl ₂ , Pentane]
Chemical formula	C32.50 H26 CI Cu2 F3 N6 O5 S
Mr	832.18
Crystal system	Orthorhombic, Pca2 ₁
Space group	
a (Å)	19.1009(15)
b (Å)	18.6389(13)
c (Å)	20.5642(15)
α (°)	90
β (°)	90
γ (°)	90
V (Å ³)	7321.3(9)
Z	8
Densitiy (g cm ⁻³)	1.510
F(000)	3368
Radiation Type	Μο Κα
μ (mm ⁻¹)	1.354
Crystal size	0.50 x 0.01 x 0.01
Meas. Refl.	83594
Indep. Refl.	13047
Obsvd. [$l > 2\sigma(l)$] refl.	11969
Rint	0.0340
R [F ² > $2\sigma(F^2)$], wR(F ²), S	0.0349, 0.0992, 1.033
Δρmax, Δρmin (e Å-³)	0.682, -0.715

Atoms	[1 · 0.5 CH ₂ Cl ₂ , Pentane]
Bond lengths	
Cu1-Cu2	2.7608(8)
Cu1-C1	1.867(4)
Cu2-C16	1.871(5)
Cu1-O1	1.865(3)
Cu2-O2	1.871(3)
O1-C30	1.263(6)
O2-C30	1.272(6)
Angles	
C1-Cu1-O1	172.59(17)
O2-Cu2-C16	172.25(17)
N1-C15-N4	109.7(4)

Table S6: Selected bond lengths (Å) and angles (°) for [1]OTf.

Figure S7: ORTEP plot of [1]OTf. Hydrogen atoms, solvent molecules and counter ions are omitted for clarity. Thermal ellipsoids are shown at a probability level of 50%.

Figure S8: ORTEP representation of the unit cell of [1]OTf (view along a axis). Hydrogen atoms are omitted for clarity.

Catalysis.

Substrate Scope & Screening.

Figure S9: Conversion of the reaction vs. time.

Figure S10: Conversion of the reaction vs. time (zoom).

Rate low.

Equilibrium constant:

$$k_e = \frac{[Dimer]}{[3]^2}; [Dimer] = Ke.[3]^2$$

Conservation of the catalyst (C₀ is the total amount of catalyst added in the reaction vessel):

$$C_0 = [3] + 2.[Dimer]$$

Thus:

 $2.Ke.[3]^2 + [3] - C_0 = 0$

$$[3] = \frac{-1 + \sqrt{1 + 8.KeC_0}}{4.Ke}$$

The rate is:

$$v = -\frac{\partial [Azide]}{\partial t} = k_{obs} \cdot [Azide] = k \cdot [3] \cdot [Azide] = k \cdot \frac{-1 + \sqrt{1 + 8 \cdot KeC_0}}{4 \cdot Ke} \cdot [Azide]$$

$$\frac{\partial [Azide]}{[Azide]} = -k.\frac{-1 + \sqrt{1 + 8.KeC_0}}{4.Ke}.\partial t$$

$$[Azide]_{t} = [Azide]_{0} \cdot e^{-\left(k \cdot \frac{-1 + \sqrt{1 + 8.KeC_{0}}}{4.Ke}\right) \cdot t}$$

With
$$k_{obs} = k \cdot \frac{-1 + \sqrt{1 + 8 \cdot KeC_0}}{4 \cdot Ke}$$

Remarks:

1– When Ke dominates:

$$v = k \cdot \frac{2 \cdot \sqrt{2 \cdot KeC_0}}{4 \cdot Ke} \cdot [Azide] = k \cdot \frac{\sqrt{C_0}}{\sqrt{2 \cdot Ke}} \cdot [Azide]$$
: The catalyst order is 0.5.

2– When Ke is small, using Taylor's formula (V(1+x) \approx 1+ x/2):

$$v = k \cdot \frac{-1 + 1 + 4 \cdot KeC_0}{4 \cdot Ke} \cdot [Azide] = k \cdot C_0 \cdot [Azide]$$

: The catalyst order is 1.

Re-calculation of the kinetics curves using calculated k and Ke values.

[**1**]₀=1 mol-%

[**1**]₀= 0.5 mol-%

Figure S13: Comparison of calculated and measured values.