Supplementary material

Non-mutagenic Ru(II) complexes: cytotoxicity, Topoisomerase IB inhibition, DNA and HSA binding

Monize M. da Silva^{a,c*}, Mariana S. de Camargo^a, Rodrigo S. Correa^b, Silvia Castelli^c, Rone A. De Grandis^d, Jessica E. Takarada^c, Eliana A. Varanda^d, Eduardo E. Castelano^e, Victor M. Deflon^f, Marcia R.Cominetti^g, Alessandro Desideri^c, Alzir A. Batista^{a*}

^aDepartamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil. ^bDepartamento de Química, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, MG, Brazil. ^cDipartimento di Biologia, Università Tor Vergata di Roma, 00133 Rome, Italy. ^dDepartamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, UNESP, CEP 14801-902, Araraquara, SP, Brazil. ^eInstituto de Física, Universidade deSão Paulo, CP 369, CEP 13560-970, São Carlos, SP, Brazil. ^fInstituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil. ^g Departamento de Gerontologia, Universidade Federal de São Carlos, CP 676, CEP 13565-905, São Carlos (SP), Brazil.

*Corresponding authors: Tel.: +55 16 33518285; fax: +55 16 33518350.

E-mail addresses: monize_martins@yahoo.com.br (M. M. da Silva); daab@ufscar.br (A.A. Batista)

Table 1S. Crystal data and structure refinement parameters obtained for the complexes 1, 3 and 5.

	1	3	5
Empirical formula	[RuC ₄₁ H ₄₀ N ₃ P ₂ S2]ClO ₄	$[RuC_{42}H_{41}N_6P_2S]PF_6$	[RuC ₄₆ H ₄₁ N ₄ OP ₂ S]PF ₆ .2H ₂ O
Formula weight	901.34	969.85	1041.90
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Pbca	Pbca	$P2_1/c$
Unit cell dimensions			
a (Å)	18.669(5)	18.3678(8)	10.0164(4)
b (Å)	19.702(5)	20.3902(5)	31.8519(14)
c (Å)	21.195(5)	22.2064(9)	14.9197(7)
β(°)	90	90	100.055
Volume (Å ³)	7796(3)	8316.8(5)	4686.9(4)
Z	8	8	4
Density calculated (Mg/m ³)	1.536	1.549	1.477
μ (mm ⁻¹)	0.707	0.610	0.550
F(000)	3696	3952	2128
Crystal size (mm ³)	0.184 x 0.056 x 0.051	0.105 x 0.092 x 0.085	0.090 x 0.040 x 0.040
θrange (°)	3.006 to 25.682	2.93 to 25.59	1.279 to 26.381
Index ranges	$-20 \le h \le 22, -24 \le k \le 21, -25 \le l \le 23$	-18≤h≤22, -24≤k≤24, -26≤l≤24	-11<=h<=12,-39<=k<=39, -18<=l<=1
Reflections collected	35026	26718	76595
Independent reflections	7375 [R(int) = 0.0737]	7787 [R(int) = 0.0875]	9602 [R(int) = 0.1752]
Completeness to θ (%)	99.7	99.6	100
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	7375 / 0 / 487	7787 / 0 / 484	9602 / 0 / 566
Goodness-of-fit on F ²	1.022	1.015	0.931
Final R indices [I>2sigma(I)]	R1 = 0.0454, wR2 = 0.1059	R1 = 0.0542, wR2 = 0.1222	R1 = 0.0604, wR2 = 0.1657
R indices (all data)	R1 = 0.0766, wR2 = 0.1170	R1 = 0.0997, wR2 = 0.1436	R1 = 0.1200, wR2 = 0.1870
$\Delta \rho_{\text{max.and}} \Delta \rho_{\text{min.}}$ (e.Å ⁻³)	0.621 and -0.457	0.507 and -0.538	1.52 d -0.908

Complex 1		N(11)-Ru-P(2)	92.16(10)
Ru(1)-N(2)	2.116(3)	N(1)-Ru-P(2)	157.82(11)
Ru(1)-N(3)	2.139(3)	N(21)-Ru-P(1)	100.08(11)
Ru(1)-N(1)	2.151(3)	N(11)-Ru-P(1)	172.84(10)
Ru(1)-P(1)	2.3095(11)	N(1)-Ru-P(1)	90.87(10)
Ru(1)-P(2)	2.3296(11)	P(2)-Ru-P(1)	94.97(5)
Ru(1)-S(1)	2.4375(11)	N(21)-Ru-S(1)	159.53(10)
N(2)-Ru(1)-N(3)	77.28(12)	N(11)-Ru-S(1)	91.53(10)
N(2)-Ru(1)-N(1)	90.60(13)	N(1)-Ru-S(1)	67.51(11)
N(3)-Ru(1)-N(1)	82.96(12)	P(2)-Ru-S(1)	91.19(5)
N(2)-Ru(1)-P(1)	107.35(9)	P(1)-Ru-S(1)	88.94(4)
N(3)-Ru(1)-P(1)	91.70(9)	Complex 5	
N(1)-Ru(1)-P(1)	159.72(10)	Ru(1)-N(3)	2.095(4)
N(2)-Ru(1)-P(2)	100.43(9)	Ru(1)-N(4)	2.134(4)
N(3)-Ru(1)-P(2)	173.83(9)	Ru(1)-N(2)	2.157(5)
N(1)-Ru(1)-P(2)	91.37(9)	Ru(1)-P(1)	2.2938(16)
P(1)-Ru(1)-P(2)	94.46(4)	Ru(1)-P(2)	2.3372(15)
N(2)-Ru(1)-S(1)	156.34(9)	Ru(1)-S(1)	2.4346(16)
N(3)-Ru(1)-S(1)	90.93(9)	N(3)-Ru(1)-N(4)	77.33(18)
N(1)-Ru(1)-S(1)	67.39(10)	N(3)-Ru(1)-N(2)	97.78(17)
P(1)-Ru(1)-S(1)	93.26(4)	N(4)-Ru(1)-N(2)	83.10(17)
P(2)-Ru(1)-S(1)	89.13(4)	N(3)-Ru(1)-P(1)	89.64(13)
Complex 3		N(4)-Ru(1)-P(1)	92.17(13)
Ru-N(21)	2.121(4)	N(2)-Ru(1)-P(1)	170.08(12)
Ru-N(11)	2.134(4)	N(3)-Ru(1)-P(2)	101.43(13)
Ru-N(1)	2.184(4)	N(4)-Ru(1)-P(2)	174.01(13)
Ru-P(1)	2.3038(13)	N(2)-Ru(1)-P(2)	91.30(12)
Ru-P(2)	2.3360(13)	P(1)-Ru(1)-P(2)	93.68(6)
Ru-S(1)	2.3939(12)	N(3)-Ru(1)-S(1)	161.62(13)
N(21)-Ru-N(11)	77.28(14)	N(4)-Ru(1)-S(1)	89.85(14)
N(21)-Ru-N(1)	93.82(14)	N(2)-Ru(1)-S(1)	67.27(12)
N(11)-Ru-N(1)	82.72(13)	P(1)-Ru(1)-S(1)	104.14(6)
N(21)-Ru-P(2)	106.13(10)	P(2)-Ru(1)-S(1)	89.94(6)

Table 2S. Bond and angle lengths (Å, $^{\rm o})$ for the complexes 1, 3 and 5.

Treatment	eatments Number of revertants (M ± SD)/plate and MI							
µg/per plate	TA 98		TA 100		TA 102		TA 97a	
(1)	- S9	+ S9	- S9	+ S9	- S9	+ S9	- S9	+ S9
0.00ª	17 ± 3	32 ± 3	111 ± 7	133 ± 7	343 ± 20	336±20	106 ± 13	149± 8
0.78	16 ± 5 (0,9)	35 ± 4 (1,0)	113 ± 10 (1,0)	136 ± 11 (1,0)	338 ± 21 (1.0)	341 ± 17 (1.0)	94 ± 11 (0,9)	141 ± 11 (0,9)
1.56	15 ± 4 (0,9)	36 ± 2 (1.1)	102 ± 9 (0,9)	131 ± 10 (0,9)	325 ± 19 (0,9)	329 ± 19 (1,0)	88 ± 8 (0,8)	137 ± 15 (1,0)
3.12	17 ± 4 (1,0)	36 ± 5 (1,1)	100 ± 8 (0,9)	132 ± 9 (1,0)	321 ± 27 (0,9)	338 ± 24 (1,0)	90 ± 7 (0,8)	140 ± 11 (1,0)
6.25	18 ± 3 (1,0)	32 ± 3 (1,0)	98 ± 11 (0,9)	126 ± 14 (0,9)	317± 29 (0,9)	347 ± 31 (1,0)	91 ± 10 (0,8)	136 ± 16 (1,1)
9.37	15 ± 5 (0,9)	34 ± 4 (1,0)	94 ± 7 (0,8)	119 ± 12 (0,9)	319 ± 28 (0,9)	327 ± 29 (1,0)	85 ± 9 (0,8)	122 ± 21 (1,1)
C +	830 ± 37^{b}	1227 ± 89 ^e	$1001 \pm 48^{\circ}$	$1340 \pm 73^{\mathrm{e}}$	1207 ± 44^{d}	$1411 \pm 41^{\mathrm{f}}$	1663 ± 58 ^b	1012±92 ^e
(2)								
0.00 ^a	18 ± 2	23 ± 4	102 ± 9	144 ± 10	344 ± 16	321 ± 17	129 ± 10	133 ± 14
0.78	17 ± 4 (0,9)	22 ± 3 (0,9)	105 ± 5 (1,0)	141 ± 15 (0,9)	347 ± 5 (1,0)	332 ± 18 (1,0)	120 ±17	145 ± 10 (1,0)
1.56	21 ± 3 (1,1)	24 ± 2 (1,1)	109 ± 7 (1,0)	137 ± 9 (0,9)	330 ± 15 (0,9)	338 ± 9 (1,0)	(0,9) 110 ± 18 (0.8)	147 ± 12 (1,1)
3.12	19 ± 3 (1,0)	21 ± 5 (0,8)	99 ± 9 (1,0)	131±13 (0,9)	318 ± 19 (0,9)	353 ± 21 (1,1)	109 ± 13	139 ± 9 (1,0)
6.25	20 ± 2 (1,1)	22 ± 5 (1,0)	101 ± 9 (1,0)	128 ± 11 (0,9)	303 ± 22 (0,9)	342 ± 27 (1,0)	103 ± 16	148 ± 4 (1,1)
9.37	19 ± 3 (1,0)	20 ± 4 (0,8)	90 ± 10 (0,9)	137 ± 10 (0,9)	306 ± 21 (0,9)	335 ± 24 (1,0)	106 ± 19	138 ± 11 (1,0)
C +	913 ± 47 b	2216 ± 88^{e}	1613 ± 49°	1761 ± 82 º	1255 ± 56^{d}	1308 ± 64^{f}	1032± 93 ^b	17083 ± 110 °
(3)								
0.00 ^a	22 ± 3	25 ± 3	109 ± 8	139 ± 7	349 ± 20	327 ± 18	99 ± 12	129 ± 11
0.78	19 ± 3 (0,8)	21 ± 2 (0,8)	117 ± 11 (1,0)	144 ± 12 (1,0)	353 ± 21	321 ± 16 (1,0)	95 ± 7 (0,9)	141 ± 9 (1,0)
1.56	20 ± 2 (0,9)	22 ± 3 (0,9)	107 ± 9 (0,9)	136 ± 7 (0,9)	341 ± 19	336 ± 11 (1,0)	88 ± 9 (0,9)	146 ± 13 (1,1)
3.12	20 ± 4 (0,9)	24 ± 4 (0,9)	103 ± 7 (0,9)	134± 11 (0,9)	321 ± 21	346 ± 19 (1,0)	96 ± 5 (0,9)	133 ± 8 (1,0)
6.25	21 ± 2 (0,9)	27 ± 6 (1,1)	98 ± 10 (0,9)	127 ± 10 (0,9)	307 ± 25	339 ± 25 (1,0)	90 ± 7 (0,9)	145 ± 7 (1,1)
9.37	18 ± 4 (0,8)	22 ± 3 (0,9)	107 ± 8 (0,8)	132 ± 11 (0,9)	310 ± 27	331 ± 22 (1,0)	83 ± 11 (0,8)	139 ± 10 (1,0)
C +	953 ± 44^{b}	2187 ± 81 ^e	1201 ± 51°	1801 ± 75 °	1293 ± 39^{d}	$1327 \pm 60^{\rm f}$	1451 ± 61^{b}	1712 ± 91 ^e

Table 3S. Mutagenic activity expressed as the mean and standard deviation of the number of revertants and mutagenic index (MI) (in brackets) in strains TA98, TA100, TA102 and TA97a exposed to compounds 1, 2 and 3 at various doses, with (+S9) or without (-S9) metabolic activation.

^a Negative control: dimethylsulfoxide (DMSO) – 100 mL per plate; C+ = Positive control. ^b 4-Nitro-o-phenylenediamine (NOPD) – 10.0 mg per plate –positive control in the absence of S9 for TA98 and TA97a. ^c Sodium azide (1.25 mg per plate) – positive control in the absence of S9 for TA100.^dMitomycin (0.5 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence of S9 for TA102. ^e 2-Anthramine (1.25 mg per plate) – positive control in the absence

presence of S9 for TA97a, TA98, and TA100.^f 2-Aminofluorene (10.0 mg per plate) – positive control in the presence of S9 for TA102.

Figure 1S. Cyclic voltammograms of complexes 2-5 in CH₂Cl₂, scan rate 100 mV/s.

Figure 2S. FT-Infrared spectra of the ligads (1-5) and complexes 1-5

Figure 3S. Uv/Vis spectra of complexes 2-5, in CHCl₂.

Figure 4S. ${}^{31}P{}^{1}H$ NMR spectra for complexes 2-5 in CH₂Cl₂/D₂O.

Figure 5S: {¹H} NMR spectra for complexes 2-5 in DMSO-d₆

Figure 6S: COSY (1H-1H) NMR spectra for complexes 2-5 in DMSO-d₆

Figure 7S: $^{13}C\{^{1}H\}$ NMR spectra for complexes 2-5 in DMSO-d_6

Figure 8S: HSQC (¹H-¹³C) NMR spectra for complexes 2-5 in DMSO-d₆

Figure 9S. Representation of the crystal packing of the complex $1.ClO_4$ (A) and the complex 3 (B), showing the same supramolecular pattern.

Overlap of 1 (light gray) and 3 (green).

Overlap of 1 (light gray) and 5 (black).

Overlap of 3 (green) and 5 (black).

Figure 10S. Overlap between the molecules of the complexes 3 and 5.

Figure 11S. H-bonding of 5 along *a*-axis.

Figure 12S: Viscosity of *ct*-DNA $(\eta/\eta_0)^{1/3}$, increasing complexes **1–5** concentrations. Experiments were carried out at 298 K, in a Tris-HCl buffer, pH 7.4.

Figure 13S. Square-wave voltammogram of 1.0 mM of complexes 1-5 at the GC electrode in Tris-HCl buffer (pH 7.4), 30% DMSO, was used as a supporting electrolyte, *ct*-DNA 4.2 μ M. Frequency = 50 Hz, pulse height = 75 mV and potential increment = 2 mV.

Figure 14S . Fluorescence quenching spectra of HAS, at different concentration of complex **1** with the excitation wavelength at 305 nm, at 310 K, in a Trizma buffer, pH 7.4.