Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

Chiral Tectonics toward Square Planar Tetranuclear Pd(II) Complexes: Propagation of Axial Chirality through a Long Molecular Axis

Yutaro Goto,^a Yutaka Watanabe,^a Aoki Noboriguchi,^a Jun Yoshida,^b Shigeki Mori^c and Hisako Sato^{a*}

^aDepartment of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan, <u>sato.hisako.my@ehime-u.ac.jp</u>

^bDepartment of Chemistry, Kitasato University, Sagamihara, 252-0329, Japan

^cAdvanced Research Support Center, Ehime University, Matsuyama 790-8577, Japan

Contents

- 1. The ¹H NMR, ¹³C NMR and mass analyses of Pd (II) complexes
- 2. The chromatographic resolution of tetranuclear Pd(II) complexes
- 3. The ECD spectra of dinuclear Pd(II) complexes
- 4. The calculated VCD spectra of dinuclear Pd(II) complexes
- 5. The crystal data and the table of selected bond lengths and torsion angles

S1. The ¹H NMR, ¹³C NMR and mass analyses of Pd (II) complexes

Tpret. ¹H NMR (500 MHz, CDCl₃): δ =2.25 (8H, q, *J*=7.5 Hz, CH₂), 1.09 ppm (12H, t, *J*= 7.5 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 195.5 (C_{CO}), 106.1 (C_{1,2}), 29.3 (C_{methylene}), 8.9 (C_{methyl}),ppm; LRMS (FAB⁺, 3-NBA) calcd for C₁₄H₂₂O₄, found *m/z*=255 [M+H]

[{(hfac)Pd(II)}2(tpret)] (1). ¹H NMR (500 MHz, CDCl₃): δ=6.21 (2H, s, CH), 2.15 (8H, q, *J*=7.5 Hz, CH₂), 1.02 ppm (12H, t, *J*=7.5 Hz, CH₃).

[{(taetH)Pd(II)}₂(tpret)](2). ¹H NMR (500 MHz, CDCl₃): δ=2.17 (8H, q, *J*=7.4 Hz, CH₂), 2.00 (12H, s, CH₃), 1.97 (12H, s, CH₃), 1.04 ppm (12H, t, *J*=7.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ=192.8 (C_{CO}), 190.4 (C_{CO}), 187.6 (C_{CO}), 111.8 (C_{vinyl}), 110.1 (C_{vinyl}), 108.1 (C_{vinyl}), 31.5 (C_{methylene}), 26.3 (C_{methyl}), 23.2 (C_{methyl}), 9.85 (C_{methyl in Et}) ppm; HRMS (ESI⁺, CH₃CN/H₂O) calcd for C₃₄H₄₆O₁₂¹⁰⁶Pd¹⁰⁸Pd+H 861.1146, found *m/z*=861.1149 [M+H]. The product isolated was analyzed by HPLC (SiO₂) and showed to be pure.

¹H NMR (**2**)

HRMS (2)

[{(hfac)Pd(II)(taet)Pd(II)}₂(tpret)] (4). ¹H NMR (500 MHz, CDCl₃): δ=6.25 (2H, s, CH), 2.17 (8H, q, *J*=7.5 Hz, CH₂), 2.02 (12H, s, CH₃), 1.96 (12H, s, CH), 1.04 (12H, t, *J*=7.5 Hz, CH₃)

[{(bzac)Pd(II)(taet)Pd(II)}₂(tpret)] (5b). ¹H NMR (500 MHz, CDCl₃): δ =7.83 (4H, broad d, *J*=7.5 Hz, *o*-H), 7.47 (2H, broad t, *J*=7.5 Hz, *p*-H), 7.38 (4H, t, *J*=7.5 Hz, *m*-H), 6.06 (2H, s, CH), 2.20 (6H, s, CH₃), 2.15 (8H, q, *J*=7.5 Hz, CH₂), 1.973 (6H, s, CH₃), 1.969 (6H, s, CH₃), 1.96 (12H, s, CH₃), 1.02 ppm (12H, t, *J*=7.5 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ =190.5 (twice in integral ratio to signals of other carbonyl carbon atoms, C_{CO}), 188.9 (C_{CO}), 188.0 (C_{CO}), 187.9 (twice, C_{CO}), 187.6 (C_{CO}), 180.5 (C_{CO}),

135.9 (C_{arom}), 131.5 (C_{arom}), 128.3 (*o*-C_{arom}), 127.5 (*m*-C_{arom}), 112.1 (twice, C_{vinyl}), 110.1 (C_{vinyl}), 98.6 (C_{vinyl}), 31.5 (C_{methylene}), 26.21 (twice, C_{methyl}), 26.17 (C_{methyl}), 26.09 (C_{methyl}), 26.01 (C_{methyl}), 9.9 (C_{methyl in Et}) ppm; HRMS (ESI⁺, CH₃CN/H₂O) calcd for C₅₄H₆₂O₁₆Pd₄+H⁺ 1391.0286, found *m*/*z*=1391.0299 [M+H⁺]. The product isolated was analyzed by HPLC (SiO₂) and showed to be pure.

¹³C NMR (**5b**)

HRMS (5b)

[{(dbm)Pd(II)(taet)Pd(II)}2(tpret)] (5a). ¹H NMR(400 MHz, CDCl₃): δ=7.93 (8H, broad d, *J*=8.0 Hz, *o*-H), 7.51 (4H, broad t, *J*=8.0 Hz, *p*-H), 7.42 (8H, broad t, *J*=8.0 Hz, *m*-H), 6.72 (2H, s, CH), 2.18 (8H, q, *J*=8.0 Hz, CH₂), 2.02 (12H, s, CH₃), 2.01 (12H, s, CH₃), 1.05 ppm (12H, t, *J*=8.0 Hz, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ =190.5 (Cco), 188.0 (Cco), 187.8 (Cco), 182.1 (Cco), 136.6 (Carom), 131.6 (Carom), 128.4 (*o*-Carom), 127.6 (*m*-Carom), 112.14 (twice, Cvinyl), 112.10 (Cvinyl), 110.2 (Cvinyl), 31.5 (Cmethylene), 26.3 (Cmethyl), 26.0 (Cmethyl), 9.9 (Cmethyl) ppm; HRMS (ESI⁺, CH₃CN/H₂O) calcd for C₆₄H₆₆O₁₆Pd₄+H⁺ 1515.0568, found *m*/*z*=1515.0530 [M+H⁺]. The product isolated was analyzed by HPLC (SiO₂) and showed to be pure.

¹H NMR (5a)

¹³C NMR (5a)

[{(**npac**)**Pd**(**II**)}2(**taet**)] (**7b**). ¹H NMR (500 MHz, CDCl₃): δ=8.38 (2H, s, aromatic H₁), 7.91-7.81 (8H, aromatic H_{3,4,5,8}), 7.53 (2H, broad t, *J*=8.0 Hz, aromatic H₆), 7.49 (2H, broad t, *J*=8.0 Hz, aromatic H₇), 6.23 (2H, s, CH), 2.26 (6H, s, CH₃), 2.03 (6H, s, CH₃), 2.01 ppm (6H, s, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ=188.9 (C_{co}), 188.1 (C_{co}), 187.7 (C_{co}), 180.2 (C_{co}), 134.8 (C_{arom}), 133.1 (C_{arom}), 132.6 (C_{arom}), 129.2 (C_{arom}),

128.3 (Carom), 128.0 (Carom), 127.7 (Carom), 127.6 (Carom), 126.5 (Carom). 124.1 (Carom), 112.2 (Cvinyl), 98.9 (Cvinyl), 26.2 (Cmethyl), 26.1 (Cmethyl), 26.0 (Cmethyl) ppm; HRMS (FAB⁺, 3-NBA) calcd for $C_{38}H_{34}O_8Pd_2$ +H⁺ 833.0406, found *m*/*z*=833.0433 [M+H]. The product isolated was analyzed by HPLC (SiO₂) and showed to be pure.

¹³C NMR (**7b**)

HRMS (7b)

[{(npac)Pd(II)(taet)Pd(II)}2(tpret)] (5c). ¹H NMR(400 MHz, CDCl₃): δ =8.40 (2H, s, aromatic H₁), 7.94-7.80 (8H, aromatic H_{3,4,5,8}), 7.56 (2H, broad t, *J*=8.0 Hz, aromatic H₆), 7.52 (2H, broad t, *J*=8.0 Hz, aromatic H₇), 6.25 (2H, s, CH), 2.28 (6H, s, CH₃), 2.18 (8H, q, *J*=8.0 Hz, CH₂), 2.04 (6H, s, CH₃), 2.01 (6H, s, CH₃), 2.00 (12H, s, CH₃), 1.05 ppm (12H, t, *J*=8.0 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =190.5 (twice, C_{CO}), 188.9 (C_{CO}), 188.05 (C_{CO}), 187.98 (twice, C_{CO}), 187.67 (C_{CO}), 180.2 (C_{CO}), 134.8 (C_{arom}), 133.1 (C_{arom}), 132.7 (C_{arom}), 129.1 (C_{arom}), 128.4 (C_{arom}), 128.1 (C_{arom}), 127.7 (C_{arom}), 127.6 (C_{arom}), 126.6 (C_{arom}). 124.1 (C_{arom}), 112.2 (C_{vinyl}), 112.1 (C_{vinyl}), 110.2 (C_{vinyl}), 26.06 (C_{methyl}), 9.9 (C_{methyl in Et}) ppm; HRMS (ESI⁺, CH₃CN/H₂O) calcd for C₆₂H₆₆O₁₆Pd₄+H⁺ 1491.0568, found *m/z*=1491.0599 [M+H]. The product isolated was analyzed by HPLC (SiO₂) and showed to be pure.

¹H NMR (5c)

¹³C NMR (5c)

HRMS (5c)

S2. HPLC chromatographic resolution of Pd(II) complexes

The chromatograms are shown below when Pd(II) complexes were resolved on a chiral HPLC column:

Figure S1. The HPLC chromatogram when $[\{(bzac)Pd(II)(taet)Pd(II)\}_2(tpret)]$ (**5b**) and $[\{(npac)Pd(II)(taet)Pd(II)\}_2(tpret)]$ (**5c**) was eluted on a 4 mm (i.d.) × 25 cm column (IC Daicel, Japan) at a flow rate of 0.5 ml/min. The eluent was dichloromethane with 0.07% methanol. The monitoring wavelength was 400 nm.

S3. ECD spectra of dinuclear Pd(II) complexes

Figure S2. The ECD spectra of $[{(bzac)Pd(II)}_2(taet)]$ (7a) (left) and $[{(npac)Pd(II)}_2(taet)]$ (7b) (right) resolved on a chiral column. The solid and grey lines indicated the less and more retaining fractions, respectively. The solvent was acetonitrile.

The IR and VCD spectra of Pd(II) complexes were calculated.

 $[{(hfac)Pd(II)}_2(dabe)]$ (6) (upper) $[{(bzac)Pd(II)}_2(taet)]$ (7a) (middle) and $[{(npac)Pd(II)}_2(taet)]$ (7b) (lower)

No	Ligand	assignment	VCD signal sign and wavenumber (cm ⁻¹) (experiment)	VCD signal sign and wavenumber (cm ⁻¹) (calculation)(S-form)		
			(less retaining fraction)			
1	dabe(CH ₃)	C-H bending	+ 1444	+ 1478(in plane)		
2	dabe	C-C-C (C-O)	+ 1416	+ 1443 (out of phase)		
3	dabe	C-C-C (C-O)	- 1400	- 1430 (in-phase)		
4'	dabe(CH ₃)	C-H bending	+ 1341	+ 1403(out of plane)		
4	dabe	C-C-C	- 1327	- 1387 (out of phase)		
4"	dabe	C-C-C	+ 1314	+ 1384 (in phase)		
5	dabe(benzyl)	C-H(benzyl)	- 1302	- 1337		

Table S1 (a) Assignment of VCD [{(hfac)Pd(II)}2(dabe)] (6)

No	Ligand	assignment	VCD signal sign and	VCD signal sign and	
			wavenumber (cm ⁻¹)	wavenumber (cm ⁻¹)	
			(experiment) (more	High/Low	
			retaining fraction)	(calculation) (S-form)	
1	bzac and	C=O stretching	+ 1541	+/- 1604, 1599	
	taet				
2	bzac	С-С-С, С-Н	-/+ 1522, 1510	-/+ 1560 couplet	
3	bzac	C-H (benzyl)	+ 1488	-/+ 1531 couplet	

Table S1 (b) Assignment of VCD [{(bzac)Pd(II)}₂(taet)] (7a)

No	Ligand	assignment	VCD signal sign and	VCD signal sign and
			wavenumber (cm ⁻¹)	wavenumber (cm ⁻¹)
			(experiment)	High/Low
			(more retaining fraction)	(calculation)(S-form)
1	npac and	C=O stretching	+ 1542	-/+ 1607, 1602
	taet			
2,2'	npac	С-С-С, С-Н	-/+ 1521, 1511	-/+ 1560 couplet
3	npac	C-H (naphthyl)	+ 1503	-/+ 1551 couplet

Table S1 (c) Assignment	of VCD [{(npac	Pd(II) ₂ (taet)] (7b)
-------------------------	----------------	----------------------------------

Figure S5-1. An ORTEP drawing of $[{(dbm)Pd(II)(taet)Pd(II)}_2(tpret)]$ (5a) with a numbering scheme of atoms. The thermal ellipsoids are scaled to the 50% probability level. Disordered phenyl group atoms with lower occupancy, hydrogen atoms, and solvent molecules are omitted for clarity.

Distances (Å)							
Pd1 – O1	1.970(2)	Pd1 – O2	1.968(3)				
Pd1 – O3	1.963(3)	Pd1 - O4	1.973(2)				
Pd2 - O5	1.971(3)	Pd2 - O6	1.968(3)				
Pd2 - O7	1.957(4)	Pd2 - O8	1.970(3)				
Pd3 - O9	1.981(2)	Pd3 - O10	1.966(3)				
Pd3 - O11	1.969(3)	Pd3 - O12	1.960(3)				
Pd4 - O13	1.961(3)	Pd4 - O14	1.965(3)				
Pd4 – O15	1.970(3)	Pd4 - O16	1.990(2)				

Table S5-1. Selected bond distances (Å) and torsion angles (deg) of [{(dbm)Pd(II)(taet)Pd(II)}2(tpret)]

Torsion angles (deg) C19 - C18 - C23 - C22 82.4(6) C28 - C29 - C36 - C35 85.3(5) C43 - C42 - C47 - C46 85.2(5)

Figure S5-2. An ORTEP drawing of $[\{(npac)Pd(II)\}_2(taet)]$ (**7b**) with a numbering scheme of atoms. The thermal ellipsoids are scaled to the 50% probability level. Hydrogen atoms, and solvent molecules are omitted for clarity.

Table	S5-2.	Selected	bond	distances	(Å)	and	torsion	angle	(deg)	of
[{(npac	e)Pd(II)}	$_2(taet)]$								

Distances (Å)						
Pd1 – O1	1.992(3)	Pd1 – O2	1.982(2)			
Pd1 – O3	1.963(2)	Pd1 – O4	1.973(2)			
Pd2 - O5	1.963(2)	Pd2 - O6	1.973(2)			
Pd2 - O7	1.977(3)	Pd2 - O8	1.999(3)			

Torsion angle (deg)

C16 - C17 - C22 - C21 = 86.3(3)