ELECTRONIC SUPPORTING INFORMATION

CONTENT

General methods and synthesis	S2
1,2-bis(diphenylphosphino)-1'-(dimesitylboryl)-3',4-di(<i>tert</i> -butyl)-ferrocene (3)	S 3
1,2-bis(diphenylphosphino)-1'-(di- <i>iso</i> -popryl)-4-(<i>tert</i> -butyl)-ferrocene (3')	S6
1,2-bis(diphenylphosphino)-1'-(dimesitylboryl)-3',4-di(<i>tert</i> -butyl)-ferrocene platinum dichloride (4)	S 9
Figure S1: Complementary view of the solid-state structure of 3	S12
Figure S2: Solvent dependence of the $^{TS}J_{PP}$ ' coupling in 3	S13
Figure S3: Variable temperature NMR monitoring of 3 in the range 220-325 K	S14
Figure S4: ³¹ P{ ¹¹ B, ¹ H} NMR monitoring of 3 at variable ¹¹ B frequency –100 to +100 ppm	S15
Figure S5: ¹ H NMR variable temperature monitoring of 3 in the methyl region	S16
Computational study	S17
Figure S6: Theoretical geometries for PPB compound conformations 3 and 3*	S17
Figure S7: Visualization of the phosphorus lone pairs basins in conformations 3 and 3*	S17
Figure S8: Main BCP and Bond Path in conformations 3 and 3* within the AIM approach	S18
Crystal data	S19

General methods and synthesis

All reactions were performed under argon atmosphere using Schlenk techniques or glovebox. Solvents were obtained from a solvent purification system or degassed and distilled from sodium benzophenone treatment under argon atmosphere prior to use. Deuterated solvent used (including CDCl₃, benzene-*d6*, toluene-*d8*, THF-*d8* and CD₂Cl₂) were dried over 3 Å molecular sieves. The functionalized cyclopentadienides were prepared following the reported procedures.^{1,2} The identity and purity of the products were established at the "Pôle Chimie Moléculaire" PACSMUB, using multinuclear NMR, elemental analysis and high-resolution mass spectrometry. Elemental analysis was performed on an Analyzer CHNS/O Thermo Electron Flash EA 1112 Series and ICP-AES iCAP Thermo. Exact masses were obtained from a LTQ-Orbitrap XL (THERMO). ¹H (δ in ppm) spectra (300.13, 500.13 or 600.13 MHz) and ¹¹B NMR (δ in ppm) spectra (96.3 or 160.5 MHz) and ¹³C NMR (δ in ppm) spectra (75.5, 125.8 or 150.9 MHz) and ³¹P NMR (δ in ppm) spectra (121.5, 202.5 or 243.0 MHz were recorded at 300 K unless otherwise mentioned on a Bruker 300 Avance, Bruker 500 Avance DRX, or Bruker 600 Avance II spectrometer.

¹ Broussier, R.; Bentabet, E.; Mellet, P.; Blacque, O.; Boyer, P.; Kubicki, M. M.; Gautheron, B. J. Organomet. Chem. **2000**, *598*, 365.

² Lerayer, E. ; Renaut, P. ; Brandès, S. ; Cattey, H. ; Fleurat-Lessard, P. ; Bouhadir, G. ; Bourissou, D. ; Hierso, J.-C. *Inorg. Chem.*, **2017**, *56*, 1966.

1,2-bis(diphenylphosphino)-1'-(dimesitylboryl)-3',4-di(tert-butyl)- ferrocene (3).

A solution of lithium 4-*tert*-butyl-1,2-bis(diphenylphosphino)cyclopentadienide **1** (0.348 g, 0.701 mmol) in 10 mL of THF was added dropwise during 5 min at -50 °C to a suspension of iron dichloride (0.087 g, 0.686 mmol) in 20 mL of THF, suspension previously refluxed independently for a better dispersion. After 1 h stirring at -50 °C, a solution of lithium 1-dimesitylboryl-3-*tert*-butylcyclopentadienide **2** complexed with one equivalent of DME (0.327 g, 0.701 mmol) in 10 mL of THF was added dropwise during 5 min at -50 °C. After 1 h at -50 °C, the reaction mixture was warmed to room temperature. The volatiles were removed under vacuum, 40 mL of toluene was added and the mixture was refluxed during 17 h. After filtration on alumina, 0.5 g of purple-brown crystalline solid containing **3** were isolated (34% NMR yield). Crystallization in a toluene/chloroform mixture gave **3** as a purple crystalline air and moisture-stable solid (0.20 g, 0.109 mmol, 32% yield). ¹H {³¹P} NMR (300 MHz, CDCl₃): δ 7.64-7.53 (2 H, m, Ph), 7.31-7.08 (8 H, m, Ph), 7.05-6.77 (8 H, m, Ph), 6.73 (4 H, s, *m*-CH), 6.71-6.62 (2 H, m, Ph), 4.88 (1 H, dd, *J* 2.6, 1.3, CpB-CH), 4.58 (1 H, dd, *J* 2.6, 1.4, CpB-CH), 4.38 (1 H, q, *J* 1.8, CpP-CH), 4.11 (2 H, m, CpP-CH and CpB-CH), 2.27 (6 H, s, *p*-CH₃), 2.01 (12 H, brs, *o*-CH₃), 1.26 (9 H, s, *t*-Bu), and 0.78 (9 H, s, *t*-Bu).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 139.97 (*o*-CH₃), 139.15 (dd, *J* 13.6, 3.8, Ph-CH), 138.30 (dd, *J* 13.9, 3.8, Ph-CH), 137.44 (*p*-CH₃), 136.17 (d, *J* 23.5, Ph-CH), 134.69 (d, *J* 21.8, Ph-CH), 134.33 (d, *J* 21.2, Ph-CH), 133.21 (d, *J* 20.7, Ph-CH), 129.19, 128.39 (d, *J* 8.1, Ph-CH), 128.26, 128.26-128.01 (m), 127.70, 127.61 (dd, *J* 7.3, 2.6, Ph- C_Q), 109.00 (CpB- C_Q), 108.23 (d, *J* 3.1, CpP- C_Q), 100.22, 99.93 (CpB-CH), 80.53 (CpB-CH), 78.61 (m, CpP-CH, CpB-CH), 73.15 (d, *J* 2.9, CpP-CH), 69.70 (CpB-CH), 32.62 (C(CH₃)₃), 31.88 (C(CH₃)₃), 30.90 (C(CH₃)₃), 30.74 (C(CH₃)₃), 24.56 (*o*-CH₃), and 21.16 (*p*-CH₃). ¹¹B signal is hardly detectable (see ref. [22] main text).

³¹P{¹H} NMR (121 MHz, CDCl₃): δ –18.3 (broad d, *J* 60.0), and –23.7 (d, *J* 59.8).

Elemental analysis for C₆₀H₆₅BFeP₂. Calculated: C (78.78 %), H (7.16%). Obtained: C (78.07%), H (7.00%). ESI-MS: $[M+H]^+$: m/z exp = 915.40505, m/z theo = 915.40767, delta = -2.867 ppm.

RMN ¹³C, CDCl₃, 75 MHz

RMN ³¹P, CDCl₃, 121 MHz ($J_{PP'} = 60 \text{ Hz}$)

1,2-bis(diphenylphosphino)-1'-(di-isopopryl)-4-(tert-butyl)-ferrocene (3').

A solution of lithium 4-*tert*-butyl-1,2-bis(diphenylphosphino)cyclopentadienide **1** (0.59 g, 1.18 mmol in 5 mL of THF¹ was added dropwise during 10 min at -50 °C to a suspension of iron dichloride (0.14 g, 1.1 mmol) in 3 mL of THF and the mixture is stirred during 1 h at -50 °C and during 2 h slowly rise up to room temperature. Then, a solution of lithium 1-di(*iso*-propyl)borylcyclopentadienide (0.21 g, 1.2 mmol) in 3 mL of THF was added dropwise during 10 min at -50 °C. During 4 h, the solution slowly rose up to room temperature, then solvent was removed and 5 mL of toluene was added and the mixture refluxed during 10 h. The solution was evaporated in vacuo, giving a mixture containing **3'** in 44% NMR yield. Crystallization in toluene gave 170 mg (0.188 mmol, 17% yield, 82% purity) of **3'** as an orange crystalline solid. The 18 % of impurity was the deborylated product 1,2-bis(diphenylphosphino)-4-(tert-butyl)-ferrocene.¹

¹H {³¹P} NMR (500 MHz, C6D6): δ 7.85 - 7.72 (4 H, m, Ph), 7.31 - 7.22 (4 H, m, Ph), 7.14 - 7.01 (6 H, m, Ph), 6.91 - 6.81 (6 H, m, Ph), 4.60 - 4.57 (2 H, m, Cp-CH), 4.38 - 4.35 (2 H, m, Cp-CH), 4.35 - 4.32 (2 H, m, Cp-CH), 1.46 (2 H, hept, J 7.4, i-Pr-CH), 1.18 (9 H, s, t-Bu), and 0.97 (12 H, d, J 7.3, i-Pr-CH3). ¹³C{¹H} NMR (75 MHz, C6D6): δ 140.12 (t, J 5.6, Ph-CH), 138.68 (t, J 4.1, Ph-CH), 135.96 (t, J 11.8, Ph-CH), 133.34 (t, J 10.1, Ph-CH), 129.41 (Ph-CH), 128.75 - 128.37 (m, Ph-CH), 128.19 - 127.77 (m, Ph-CH), 107.70, 82.36 (d, J 8.6, CpP-CH), 82.25 (d, J 8.9, CpP-CH), 77.66 (CpB-CH), 75.89 (CpB-CH), 71.49 (CpB-CH), 31.97, 31.84, 30.40, 23.65, 23.06, 20.23, and 14.36. ³¹P{¹H} NMR (202 MHz, C₆D₆): δ -23.4 (s).

RMN 1 H, C₆D₆, 300 MHz

1,2-bis(diphenylphosphino)-1'-(dimesitylboryl)-3',4-di(tert-butyl)-ferrocene dichloride (4)

1,2-bis(diphenylphosphino)-1'-(dimesitylboryl)-3,3'-di(*tert*-butyl)-ferrocene **3** (9.5 mg, 0.0104 mmol) and (1,5-cyclooctadiene)platinum dichloride (3.9 mg, 0.0104 mmol) were solubilized in 1 mL of CD₂Cl₂ at room temperature, to give quantitatively **4** in a red-orange solution, from which crystals were grown from slow evaporation.

¹H{³¹P} NMR (600 MHz, CD₂Cl₂): δ 8.06 (2 H, d, *J* 7.3, Ph), 7.78 (2 H, d, *J* 7.7, Ph), 7.57 (3 H, dt, *J* 14.8, 7.2, Ph), 7.39-7.30 (4 H, m, Ph), 7.23 (2 H, dt, *J* 13.7, 7.5, Ph), 7.13 (3 H, dt, *J* 10.2, 7.7, Ph), 7.08 (2 H, t, *J* 7.6, Ph), 6.72 (4 H, brs, *m*-C*H*), 4.77 (1 H, s, CpB-C*H*), 4.74 (1 H, s, CpB-C*H*), 4.65 (1 H, s, CpP-C*H*), 4.50 (1 H, s, CpP-C*H*), 4.02 (1 H, s, CpB-C*H*), 2.27 (6 H, brs, *p*-C*H*₃), 2.12-1.42 (12 H, m, *o*-C*H*₃), 1.16 (9 H, s, *t*-B*u*), and 0.64 (9 H, s, *t*-B*u*).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 136.78 (d, *J* 11.9, Ph-CH), 135.69 (d, *J* 11.8, Ph-CH), 132.91, 132.52 (dd, *J* 38.6, 10.3, Ph-CH), 131.45, 130.90 (dd, *J* 6.4, 2.8, Ph-CQ), 130.35, 128.90, 128.47 (d, *J* 11.2, Ph-CH), 128.12 (d, *J* 12.5, Ph-CH), 109.21, 82.24 (CpB-CH), 75.27 (CpB-CH), 73.19 (CpB-CH), 72.11 (dd, *J* 11.8, 3.2, CpP-CH), 67.41 (dd, *J* 12.6, 2.7, CpP-CH), 32.31 (C(CH₃)₃), 31.73 (C(CH₃)₃), 31.30 (*C*(CH₃)₃), 30.42 (*C*(CH₃)₃), 21.13 (*p*-CH₃).

³¹P{¹H} NMR (121 MHz, CDCl₃): δ 22.0 (d J_{PP} = 11.5 Hz, J_{PPt} = 3636 Hz), and 21.6 (d, J_{PP} = 11.5 Hz, J_{PPt} = 3636 Hz).

ESI-MS: $[M+Na]^+$: m/z exp = 1202.29120, m/z theo = 1202.29210, delta = -0.747 ppm.

Figure S1: Complementary views of the solid-state structure of 3 (in mirror images of main text representation since both enantiomers are present in the unit cell)

Gradual decrease of solvent polarity correlates weaker coupling constant with $J_{PP'}$ decrease from 60.0 Hz in CDCl₃, 54.0 Hz in a 1:1 CDCl₃:toluene mixture, down to 44.2 Hz in pure toluene. Solvent dependency is known for "through-space" coupling involving weak hydrogen bonding interaction.³ Here, intercalation of toluene (from π -stacking with phenyl) presumably does not facilitate phosphorus lone-pair overlap at the origin of TS spin coupling, contrary to more polar chloroform solvent.

³ Hierso, J.-C. Chem. Rev. 2014, 114, 4838.

Figure S3: Variable temperature NMR monitoring of 3 in the range 220-325 K (CDCl₃, 243 MHz)

343 K (10 K, toluene-d8, 400 MHz)

Computational Details

Quantum mechanics calculations were performed with the Gaussian16 software package.^[1] Energy and forces were computed by density functional theory with the global hybrid B3PW91 exchangecorrelation functional,^[2] with the Pople 6-31+G(d,p) basis sets. Dispersion effects were taken into account using the empirical correction proposed by Grimme with a Becke-Johnson damping.^[3] Atoms In Molecules (AIM) analysis were performed with the AIMall software.^[4] Topological analyses of the Electron Localization Function (ELF) were performed with the TopChem2 suite.^[5]

Starting from the X-Ray structure determined for platinum complex 4, we optimized the geometry of 3^* , as a conformer of PPB ligand found in its conformation 3. In conformer 3^* the two phosphorus lone pairs point towards each other, ready for chelation to transition metals. This conformer was found to be fairly stable but is located in energy 2.6 kcal mol⁻¹ higher than conformer 3 (Fig. S6). Phosphorus lone pairs space-occupation were then visualized within the ELF analysis as displayed in Fig. S7.

Conformation 3: $\Delta E = 0$ kcal/mol

Conformation 3*: $\Delta E = 2.6$ kcal/mol

While the phosphorus lone pairs are facing each other in **3***, they are avoiding this situation in **3**. The angle between the lone pair of P1 (LP1), P2 and P2 is 81.4° and the angle P1-P2-LP2 is 140.3°.

In the X-ray structure corresponding to optimized conformer **3**, the lone pair of phosphorus P2 is pointing in the direction of the boron atom: the angle LP2–P2–B is only 45.1 °, the question of an interaction between these two atoms is thus pertinent. We thus performed AIM analysis of the electronic structure of **3**. The resulting Bond Critical Points (BCP) and Bond Path are displayed in Fig. S8. No BCP were found between P2 and B in both **3** and **3*** conformations. This rules out a strong interaction between these two atoms, in agreement with the full NMR study.

Conformation 3

Conformation 3*

Figure S8: Main BCP and Bond Path in conformations 3 and 3* within the AIM approach

Reference for the theoretical computations

[1] Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

[2] A. D. Becke, "Density-functional thermochemistry. III. The role of exact exchange," J. Chem. Phys. 1993, 98, 5648-52. DOI: 10.1063/1.464913

[3] S. Grimme, S. Ehrlich and L. Goerigk, "Effect of the damping function in dispersion corrected density functional theory," *J. Comp. Chem.* **2011**, *32*, 1456-65. DOI: 10.1002/jcc.21759

[4] AIMAll (Version 19.02.13), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019 (aim.tkgristmill.com)

[5] a) D. Kozlowski and J. Pilmé "New Insights in Quantum Chemical Topology Studies Using Numerical Grid-based Analyses" *J. Comput. Chem.* **2011**, *32*, 3207–3217, 2011; b)

http://www.lct.jussieu.fr/pagesperso/pilme/topchempage.html

Crystal Data and Experimental

Experimental. A single clear light red prism-shaped crystals of Compound 3 with dimensions of (0.20×0.15×0.05) mm³ was mounted on a Nonius Kappa Apex II diffractometer. The crystal was kept at T = 115 K during data collection. Data were measured using ϕ and ω scans using MoK_{α} radiation ($\lambda = 0.71073$). Cell parameters were retrieved and refined using SAINT. Data reduction was performed using the SAINT software which corrects for Lorentz polarisation. Using Olex2 (Dolomanov et al., 2009), the structure was solved with the **ShelXS** structure solution program, using the Direct Methods solution method. The model was refined with version 2014/7 of XL (Sheldrick, 2008) using Least Squares minimisation.

Crystal Data. $C_{60}H_{65}BFeP_2$, $M_r = 914.72$, monoclinic, $P2_1/n$ (No. 14), a = 14.0236(5) Å, b = 19.7055(5) Å, c = 18.3538(6) Å, $\beta = 99.8570(10)^\circ$, $\alpha = \gamma = 90^\circ$, V = 4997.1(3) Å³, T = 115 K, Z = 4, Z' = 1, μ (MoK $_{\alpha}$) = 0.404, 30301 reflections measured, 11419 unique ($R_{int} = 0.0374$) which were used in all calculations. The final wR_2 was 0.1008 (all data) and R_1 was 0.0465 (I > 2(I)).

Compound N° CCDC	3 1902394
	1702071
Formula	$C_{60}H_{65}BFeP_2$
D _{calc.} / g cm ⁻³	1.216
<i>u</i> /mm ⁻¹	0.404
Formula Weight	914.72
Colour	clear light red
Shape	prism
Size/mm ³	0.20×0.15×0.05
Т/К	115
Crystal System	monoclinic
Space Group	P2 ₁ /n
a/Å	14.0236(5)
b/Å	19.7055(5)
c/Å	18.3538(6)
$\alpha/^{\circ}$	90
<i>β</i> /°	99.857(1)
γľ°	90
V/Å ³	4997.1(3)
Ζ	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	MoK _α
$\Theta_{min}/^{\circ}$	2.478
$\Theta_{max}/^{\circ}$	27.496
Measured Refl.	30301
Independent Refl.	11419
Reflections Used	9473
R _{int}	0.0374
Parameters	583
Restraints	0
Largest Peak	0.428
Deepest Hole	-0.381
GooF	1.093
wR_2 (all data)	0.1008
wR_2	0.0923
R_1 (all data)	0.0617
R1	0.0465

A clear light red prism-shaped crystal with dimensions $0.20 \times 0.15 \times 0.05 \text{ mm}^3$ was mounted on a mylar loop with oil. X-ray diffraction data were collected using a Nonius Kappa Apex II diffractometer with a Oxford Cryosystems low-temperature device, operating at T = 115 K. Data were measured using ϕ and ω scans using MoK_{α} radiation (X-ray tube, 50 kV, 32 mA). The total number of runs and images was based on the strategy calculation from the program **APEX2** (Bruker). The maximum resolution achieved was Θ = 27.496°.

Cell parameters were retrieved using the **SAINT** (Bruker, V8.34A, 2013) software and refined using **SAINT** (Bruker, V8.34A, 2013) on 44900 reflections. Data reduction was performed using the **SAINT** (Bruker, V8.34A, 2013) software which corrects for Lorentz polarisation. No absorption correction was performed. The absorption coefficient μ of this material is 0.404 at this wavelength (λ = 0.71073).

The structure was solved in the space group $P2_1/n$ (# 14) by Direct Methods using the **ShelXS** structure solution program and refined by Least Squares using version 2014/7 of **XL** (Sheldrick, 2008). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

Atom	x	У	Z	U_{eq}
C1	9817.9(14)	8771(1)	2569.3(11)	15.0(4)
C2	9197.1(14)	8248.2(10)	2789.0(11)	15.6(4)
C3	8689.7(14)	7952.6(10)	2116.6(11)	17.2(4)
C4	8989.0(15)	8258.6(10)	1493.3(11)	18.1(4)
C5	9670.7(14)	8769.8(10)	1776.2(11)	17.8(4)
C6	7076.4(14)	9187.9(10)	2483.5(11)	16.8(4)
C7	7061.8(14)	9382.9(10)	1723.2(11)	16.7(4)
C8	7778.3(14)	9883.1(10)	1678.5(12)	17.6(4)
С9	8284.2(14)	9986.1(10)	2415.1(12)	17.5(4)
C10	7874.7(14)	9562.8(10)	2904.4(11)	15.9(4)
C11	11001.4(14)	9966.5(10)	2573.8(11)	17.5(4)
C12	11522.3(15)	9829.9(11)	2009.4(12)	22.3(4)
C13	11823.5(17)	10351.7(12)	1593.0(13)	27.2(5)
C14	11618.8(17)	11020.8(12)	1740.8(13)	28.5(5)
C15	11103.7(17)	11167.2(11)	2300.8(13)	26.6(5)
C16	10800.6(15)	10644.0(11)	2716.5(12)	21.1(4)
C17	11739.4(15)	8794.9(10)	3306.1(12)	18.9(4)
C18	11821.0(16)	8195.1(11)	2920.2(13)	24.2(5)
C19	12693.2(18)	7837.5(12)	3026.1(15)	31.8(5)
C20	13482.8(17)	8078.3(13)	3511.6(15)	32.5(6)
C21	13410.6(17)	8671.7(13)	3897.2(14)	32.0(6)
C22	12541.3(15)	9021.5(12)	3803.1(13)	24.8(5)
C23	9711.6(15)	7126.1(10)	3752.0(12)	18.2(4)
C24	10111.2(16)	6840.0(11)	3178.9(12)	22.7(4)
C25	10607.4(18)	6226.1(12)	3279.6(14)	29.7(5)
C26	10699.9(18)	5888.0(11)	3950.1(14)	30.0(5)
C27	10310.0(17)	6167.7(11)	4523.9(13)	27.8(5)
C28	9819.5(16)	6782.1(11)	4428.8(12)	23.1(4)
C29	9558.0(16)	8410.3(10)	4408.2(11)	19.0(4)
C30	10546.4(16)	8365.2(11)	4685.9(12)	22.1(4)
C31	10961.5(19)	8780.0(12)	5270.4(13)	29.4(5)
C32	10392(2)	9238.3(12)	5572.9(13)	34.1(6)
C33	9407(2)	9278.3(12)	5309.7(13)	30.8(5)
C34	8988.3(17)	8862.2(11)	4736.5(12)	23.4(5)
C35	8761.4(17)	7992.4(11)	705.0(12)	24.9(5)
C36	7677.7(19)	7991.1(14)	403.1(14)	36.9(6)
C37	9289(2)	8399.5(16)	192.3(14)	44.0(7)

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **Compound 3**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U _{eq}
C38	9139(3)	7257.3(14)	735.4(16)	51.4(8)
C39	6220.8(14)	8940.2(10)	3653.1(12)	18.1(4)
C40	6258.5(15)	9598.5(11)	3973.4(12)	21.2(4)
C41	6248.3(15)	9672.8(12)	4729.8(13)	24.8(5)
C42	6219.9(16)	9129.5(13)	5197.3(13)	26.4(5)
C43	6163.8(15)	8484.5(12)	4883.5(12)	23.3(5)
C44	6154.2(14)	8382.2(11)	4131.9(12)	19.2(4)
C45	6277.1(17)	10256.7(11)	3544.3(14)	26.9(5)
C46	6272(2)	9221.2(15)	6021.3(14)	38.5(6)
C47	6131.4(16)	7659.5(11)	3859.1(12)	22.2(4)
C48	5392.8(15)	8466.3(10)	2256.2(11)	17.8(4)
C49	5439.5(15)	7826.7(11)	1923.0(12)	20.3(4)
C50	4643.5(16)	7564.6(11)	1436.9(12)	24.1(5)
C51	3791.0(16)	7923.7(12)	1264.0(13)	26.0(5)
C52	3744.4(16)	8560.8(12)	1581.7(12)	24.4(5)
C53	4513.5(15)	8831.7(10)	2071.7(12)	19.4(4)
C54	6325.5(16)	7377.6(12)	2096.1(14)	27.1(5)
C55	2924.1(18)	7626.9(15)	760.3(15)	39.0(6)
C56	4392.0(17)	9519.0(11)	2403.3(14)	27.1(5)
C57	7875.2(16)	10339.6(11)	1028.0(12)	21.9(4)
C58	8923.1(18)	10410.3(15)	908.6(15)	38.5(6)
C59	7242.7(18)	10089.5(12)	316.8(12)	28.7(5)
C60	7498(2)	11039.0(11)	1216.2(14)	32.9(6)
В	6258.9(16)	8825.5(11)	2799.0(13)	16.7(4)
Fe	8405.7(2)	8974.5(2)	2161.6(2)	14.21(7)
P1	10635.6(4)	9315.4(3)	3195.9(3)	15.43(11)
P2	8937.1(4)	7884.8(3)	3648.1(3)	16.26(11)

Table 2: Anisotropic Displacement Parameters (×10⁴) **Compound 3**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U ₁₁	U ₂₂	U 33	U ₂₃	U ₁₃	U ₁₂
C1	12.7(9)	14.4(9)	17.2(10)	-0.6(7)	1.0(7)	3.0(7)
C2	12.9(9)	15.6(9)	17.3(10)	-0.3(7)	-0.2(7)	1.2(7)
С3	16.7(10)	13.8(9)	20.1(10)	-2.1(8)	0.1(8)	2.0(7)
C4	17.1(10)	18.6(10)	17.9(10)	-1.4(8)	0.8(8)	4.4(8)
C5	15.8(9)	20.7(10)	16.9(10)	0.8(8)	2.8(8)	4.1(8)
C6	14.8(9)	13.4(9)	21.6(10)	-0.7(8)	1.8(8)	1.7(7)
C7	15.7(9)	14.8(9)	18.4(10)	-0.7(7)	0.2(8)	2.3(7)
C8	15.7(9)	14.8(9)	20.8(10)	1.3(8)	-1.0(8)	2.5(7)
С9	15.0(9)	14.4(9)	22.2(10)	-1.6(8)	1.0(8)	0.5(7)
C10	14.6(9)	14.9(9)	17.5(10)	-2.7(7)	0.5(8)	1.1(7)
C11	14.5(9)	18.5(10)	17.9(10)	1.8(8)	-1.7(8)	-0.9(8)
C12	20.4(10)	21.6(10)	25.6(12)	-0.6(9)	5.7(9)	0.1(8)
C13	24.5(11)	34.5(13)	24.3(12)	3.7(10)	9.3(9)	-1.6(10)
C14	29.5(12)	26.5(12)	28.8(12)	7.7(10)	3.2(10)	-7.1(10)
C15	29.6(12)	16.8(10)	32.3(13)	1.1(9)	2.4(10)	-3.5(9)
C16	19(1)	20.7(10)	23.2(11)	-0.1(8)	2.8(8)	-1.2(8)
C17	17.1(10)	18.9(10)	20.4(10)	5.3(8)	2.0(8)	0.1(8)
C18	19.6(11)	23.2(11)	28.7(12)	1.6(9)	1.4(9)	4.6(9)
C19	30.3(13)	26.9(12)	39.5(14)	5(1)	9.2(11)	10.4(10)
C20	19.2(11)	38.0(14)	40.3(15)	18.3(11)	5(1)	8.9(10)
C21	17.4(11)	40.4(14)	34.9(14)	13.2(11)	-4.4(10)	-1.3(10)
C22	19.2(10)	27.4(11)	25.9(11)	4.0(9)	-1.2(9)	-1.3(9)
C23	17.8(10)	14.9(9)	20.2(10)	0.8(8)	-2.0(8)	-0.5(8)
C24	28.0(11)	18.1(10)	21.6(11)	1.7(8)	3.3(9)	3.2(9)
C25	36.2(13)	22.6(11)	30.2(13)	-2.0(9)	5.8(10)	8.2(10)
C26	35.0(13)	19.2(11)	32.4(13)	0.9(9)	-3.7(10)	7.3(10)
C27	29.9(12)	22.8(11)	27.1(12)	6.7(9)	-5.5(10)	2.0(9)
C28	25.0(11)	21.9(11)	21.9(11)	1.9(9)	2.8(9)	1.5(9)
C29	26.5(11)	15.1(9)	15.5(10)	0.6(7)	3.9(8)	-1.3(8)
C30	26.0(11)	22(1)	17.7(10)	0.7(8)	2.5(8)	-3.8(9)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C31	35.1(13)	29.7(12)	21.1(11)	3.4(9)	-1.7(10)	-11(1)
C32	59.3(17)	24.1(12)	17.4(11)	-4.2(9)	2.1(11)	-15.4(11)
C33	51.5(16)	20.1(11)	21.4(12)	-2.1(9)	7.9(11)	2.5(10)
C34	32.9(12)	19.3(10)	18.1(10)	2.8(8)	4.9(9)	3.0(9)
C35	30.4(12)	26.8(11)	16.1(10)	-5.2(9)	0.1(9)	4.6(9)
C36	35.3(14)	45.3(15)	26.8(13)	-11.7(11)	-3.9(11)	-1.7(12)
C37	48.4(17)	65(2)	19.5(13)	-7.0(12)	9.4(12)	-11.1(15)
C38	83(2)	40.0(16)	27.5(14)	-12.5(12)	0.1(14)	29.4(16)
C39	11.4(9)	20(1)	22.9(10)	-2.2(8)	3.0(8)	-0.8(8)
C40	15.3(10)	22.0(11)	26.5(11)	-4.2(9)	4.3(8)	-0.7(8)
C41	18.2(10)	29.4(12)	27.0(12)	-11.2(9)	4.2(9)	-0.7(9)
C42	17.8(10)	39.9(13)	21.9(11)	-5.8(10)	4.1(9)	-1.0(9)
C43	16.3(10)	31.0(12)	22.3(11)	3.2(9)	2.7(8)	1.9(9)
C44	10.4(9)	22.3(10)	24.9(11)	-0.2(8)	2.7(8)	0.7(8)
C45	25.0(11)	17.8(10)	38.9(14)	-5.7(9)	8.2(10)	1.3(9)
C46	38.0(15)	54.9(17)	23.8(13)	-9.9(12)	8.4(11)	-6.2(13)
C47	21.1(11)	21(1)	24.4(11)	2.6(8)	3.8(9)	0.8(8)
C48	18(1)	19.1(10)	16.8(10)	0.3(8)	4.0(8)	-2.8(8)
C49	18.9(10)	21.7(10)	20.7(11)	-0.4(8)	4.8(8)	-3.0(8)
C50	25.1(11)	23.7(11)	24.0(11)	-5.2(9)	5.7(9)	-6.7(9)
C51	21.7(11)	33.9(12)	21.1(11)	-1.6(9)	-0.3(9)	-8.4(9)
C52	18.7(11)	31.6(12)	21.3(11)	3.5(9)	-0.9(9)	-0.9(9)
C53	17.9(10)	20.2(10)	19.4(10)	4.1(8)	1.6(8)	-1.4(8)
C54	20.3(11)	25.3(11)	35.1(13)	-9.3(10)	2.7(10)	0.2(9)
C55	27.1(13)	49.4(16)	36.3(15)	-7.6(12)	-6.5(11)	-7.4(12)
C56	22.8(11)	23.0(11)	33.1(13)	-0.1(9)	-1.7(10)	3.3(9)
C57	23.1(11)	18.9(10)	21.5(11)	3.4(8)	-2.4(9)	-2.4(8)
C58	27.2(13)	49.9(16)	37.8(15)	22.2(12)	4.3(11)	-4.8(11)
C59	38.0(14)	27.5(12)	18.1(11)	2.6(9)	-2.6(10)	-5.7(10)
C60	50.8(16)	16.4(11)	27.7(12)	3.5(9)	-3.8(11)	1.4(10)
В	14.5(10)	11.2(10)	24.0(12)	-0.1(8)	2.3(9)	4.2(8)
Fe	13.23(14)	13.57(13)	15.08(14)	-0.58(11)	0.29(10)	1.10(11)
P1	14.4(2)	15.0(2)	16.2(3)	-0.40(19)	0.77(19)	-0.74(19)
P2	16.3(2)	15.1(2)	17.2(3)	0.28(19)	2.50(19)	0.40(19)

Atom	Atom	Length/Å	Atom	Atom
C1	C2	1.450(3)	C23	C28
C1	C5	1.435(3)	C23	P2
C1	Fe	2.0335(19)	C24	C25
C1	P1	1.827(2)	C25	C26
C2	C3	1.438(3)	C26	C27
C2	Fe	2.0418(19)	C27	C28
C2	P2	1.824(2)	C29	C30
C3	C4	1.419(3)	C29	C34
C3	Fe	2.0573(19)	C29	P2
C4	C5	1.424(3)	C30	C31
C4	C35	1.521(3)	C31	C32
C4	Fe	2.123(2)	C32	C33
C5	Fe	2.059(2)	C33	C34
C6	C7	1.444(3)	C35	C36
C6	C10	1.449(3)	C35	C37
C6	В	1.545(3)	C35	C38
C6	Fe	2.092(2)	C39	C40
C7	C8	1.420(3)	C39	C44
C7	Fe	2.080(2)	C39	В
C8	С9	1.430(3)	C40	C41
C8	C57	1.519(3)	C40	C45
C8	Fe	2.121(2)	C41	C42
С9	C10	1.417(3)	C42	C43
С9	Fe	2.061(2)	C42	C46
C10	Fe	2.026(2)	C43	C44
C11	C12	1.392(3)	C44	C47
C11	C16	1.398(3)	C48	C49
C11	P1	1.847(2)	C48	C53
C12	C13	1.389(3)	C48	В
C13	C14	1.386(3)	C49	C50
C14	C15	1.384(3)	C49	C54
C15	C16	1.392(3)	C50	C51
C17	C18	1.393(3)	C51	C52
C17	C22	1.395(3)	C51	C55
C17	P1	1.839(2)	C52	C53
C18	C19	1.396(3)	C53	C56
C19	C20	1.381(4)	C57	C58
C20	C21	1.379(4)	C57	C59
C21	C22	1.385(3)	C57	C60
C23	C24	1.393(3)		

Length/Å 1.401(3) 1.838(2) 1.392(3) 1.386(3)1.382(3) 1.389(3) 1.395(3) 1.400(3) 1.833(2)1.394(3) 1.383(4) 1.385(4) 1.383(3) 1.526(3) 1.521(4) 1.540(3) 1.421(3) 1.420(3) 1.594(3) 1.398(3) 1.520(3) 1.377(3) 1.392(3) 1.512(3) 1.392(3) 1.508(3) 1.407(3) 1.418(3) 1.598(3) 1.403(3) 1.514(3)1.379(3) 1.391(3) 1.513(3) 1.387(3) 1.506(3) 1.529(3) 1.529(3) 1.537(3)

Table 3: Bond Lengths in Å for **Compound 3**.

 Table 4: Bond Angles in ° for Compound 3.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	Fe	69.46(11)	C3	C4	C5	106.23(18)
C2	C1	P1	125.76(15)	C3	C4	C35	125.28(19)
C5	C1	C2	106.98(17)	C3	C4	Fe	67.68(11)
C5	C1	Fe	70.43(11)	C5	C4	C35	127.55(19)
C5	C1	P1	127.26(15)	C5	C4	Fe	67.69(11)
P1	C1	Fe	125.64(10)	C35	C4	Fe	137.74(15)
C1	C2	Fe	68.85(11)	C1	C5	Fe	68.53(11)
C1	C2	P2	137.52(15)	C4	C5	C1	110.00(18)
C3	C2	C1	106.36(17)	C4	C5	Fe	72.53(12)
C3	C2	Fe	70.04(11)	C7	C6	C10	105.15(17)
C3	C2	P2	116.10(15)	C7	C6	В	126.62(18)
P2	C2	Fe	126.36(10)	C7	C6	Fe	69.30(11)
C2	C3	Fe	68.89(11)	C10	C6	В	126.23(19)
C4	C3	C2	110.40(18)	C10	C6	Fe	66.96(11)
C4	C3	Fe	72.68(11)	В	C6	Fe	140.10(14)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C6	C7	Fe	70.21(11)	C44	C43	C42	122.2(2)
C8	C7	C6	110.33(18)	C39	C44	C47	121.69(19)
C8	C7	Fe	71.80(11)	C43	C44	C39	120.7(2)
C7	C8	С9	106.58(18)	C43	C44	C47	117.51(19)
C7	C8	C57	128.00(18)	C49	C48	C53	117.01(19)
C7	C8	Fe	68.70(11)	C49	C48	В	125.50(18)
C9	C8	C57	124.22(18)	C53	C48	В	117.45(18)
C9	C8	Fe	67.75(11)	C48	C49	C54	121.99(19)
C57	C8	Fe	137.88(15)	C50	C49	C48	121.0(2)
C8	C9	Fe	72.30(11)	C50	C49	C54	116.96(19)
C10	C9	C8	109.05(17)	C51	C50	C49	121.4(2)
C10	C9	Fe	68.40(11)	C50	C51	C52	117.9(2)
6	C10	Fe	71.88(11)	C50	C51	C55	121.1(2)
(9	C10	C6	108.80(18)	C52	C51	C55	121.0(2)
C9	C10 C11	Fe C1C	/1.03(12)	C40	C52	C51	122.1(2)
C12		C10 D1	110.17(19) 12420(16)	CE2	C53	C10	120.92(19)
C12	C11	F 1 D 1	124.20(10) 117.46(16)	C52	C53	C40 C56	120.3(2)
C10 C12	C12	F1 C11	117.40(10) 120.0(2)	C32	C57	C58	110.00(19) 11258(19)
C13	C12 C13	C12	120.9(2) 120.2(2)	C8	C57	C59	111 30(18)
C15	C14	C12 C13	120.2(2) 1197(2)	C8	C57	C60	105 89(18)
C14	C15	C16	1200(2)	C58	C57	C59	109.8(2)
C15	C16	C10	120.0(2) 1210(2)	C58	C57	C60	109.0(2) 109.1(2)
C18	C17	C22	118.5(2)	C59	C57	C60	108.01(18)
C18	C17	P1	123.94(16)	C6	B	C39	117.07(18)
C22	C17	P1	117.55(17)	C6	В	C48	120.30(19)
C17	C18	C19	120.3(2)	C39	В	C48	121.74(18)
C20	C19	C18	120.2(2)	C1	Fe	C2	41.68(8)
C21	C20	C19	120.1(2)	C1	Fe	C3	68.82(8)
C20	C21	C22	119.9(2)	C1	Fe	C4	68.55(8)
C21	C22	C17	121.1(2)	C1	Fe	C5	41.04(8)
C24	C23	C28	118.53(19)	C1	Fe	C6	142.59(8)
C24	C23	P2	123.89(16)	C1	Fe	C7	168.33(8)
C28	C23	P2	117.25(16)	C1	Fe	C8	128.94(8)
C25	C24	C23	120.5(2)	C1	Fe	C9	102.75(8)
C26	C25	C24	120.3(2)	C2	Fe	C3	41.07(8)
C27	C26	C25	119.7(2)	C2	Fe Fe	C4	68.53(8)
C26	C27	C28	120.3(2)	C2	Fe Fe	C5	68.86(8)
C20	C20	C23	120.0(2)	C2	Fe		113.90(8)
C30	C29	C34 D2	119.2(2)	C_2	ге Бо	C2	149.12(0)
C34	C29	P2	123.07(10) 117.08(17)	C2	Fe	C0 C9	100.72(0) 12750(8)
C31	C30	C29	120 1(2)	C3	Fe	C4	39 64(8)
C32	C31	C30	1199(2)	C3	Fe	C5	67.07(8)
C31	C32	C33	120.4(2)	C3	Fe	C6	113.33(8)
C34	C33	C32	120.0(2)	C3	Fe	C7	122.14(8)
C33	C34	C29	120.4(2)	C3	Fe	C8	151.51(8)
C4	C35	C36	112.32(19)	C3	Fe	С9	168.54(8)
C4	C35	C37	111.19(19)	C5	Fe	C4	39.78(8)
C4	C35	C38	105.98(19)	C5	Fe	C6	176.37(8)
C36	C35	C38	109.0(2)	C5	Fe	C7	136.03(8)
C37	C35	C36	109.6(2)	C5	Fe	C8	109.99(8)
C37	C35	C38	108.5(2)	C5	Fe	C9	112.12(8)
C40	C39	В	122.07(18)	C6	Fe	C4	138.30(8)
C44	C39	C40	116.89(19)	C6	Fe	C8	67.82(8)
C44	C39	В	121.04(18)	C7	Fe	C4	116.54(8)
C39	C40	C45	124.6(2)	C7	Fe	C6	40.49(8)
L41	C40	C39	120.0(2)	ե7 ՀՈ	ге Г-	L8 C4	39.49(8)
U41 C42	C40 C41	C40	115.40(19)	Lờ CO	ге Бо	Ե4 C4	117.52(8)
C41	U41 C42	C40 C42	122.9(2)	69 60	ге Бо	Ն4 Ը6	145.92(8)
041 C41	042 C42	643 646	11/.2(2)	69 60	re Fo	C7	00.27(0) 66.06(0)
C41 C42	C42	C40 C46	121.7[2] 120.8(2)	69 69	re Fo	с/ С8	20 02(0) 00.30(0)
643	642	640	120.0(2)	67	re	0	22.22[0]

Atom	Atom	Atom	Angle/°
C10	Fe	C1	108.19(8)
C10	Fe	C2	104.39(8)
C10	Fe	C3	133.09(8)
C10	Fe	C4	172.45(8)
C10	Fe	C5	141.34(8)
C10	Fe	C6	41.16(8)
C10	Fe	C7	68.03(8)
C10	Fe	C8	67.93(8)

Table 5: Torsion Angles in ° for **Compound 3**.

Atom	Atom	Atom	Atom	Angle/°
C1	C2	С3	C4	1.5(2)
C1	C2	C3	Fe	-59.56(13)
C1	C2	P2	C23	-971(2)
C1	C2	P2	C29	82(2)
C2	C1	C5	C4	-0.7(2)
C2		CE CE	E o	=0.7(2)
C2		L3 D1	ге С11	160.13(13)
CΖ	UI	F1	CII	-100./5(1/
C2	C1	P1	C17	90.66(18)
C2	C3	C4	C5	-1.9(2)
C2	C3	C4	C35	167.64(19)
C2	C3	C4	Fe	-58.76(14)
C3	C2	P2	623	81 18(16)
C3	C2	P2	C29	-173 51(15
65	62	12	(2)	-1/3.51(15
C3	C4	C5	C1	1.6(2)
C3	C4	C5	Fe	-56.84(13)
C3	C4	C35	C36	63.2(3)
C3	C4	C35	C37	-173.6(2)
C3	C4	C35	C38	-55.8(3)
C5	C1	C2	C3	-0.4(2)
C5	C1	C2	Fe	-60.77(13)
C5	C1	C2	P2	177 98(17)
C5	C1	0 ≟ ₽1	C11	11 94(19)
C5	C1	Р1	C17	-88 64(18)
C5	C4	C35	C36	-129 5(2)
C5	C4	C35	C37	-63(3)
C5	C4	C35	C38	1115(3)
C6	C7	C35	C9	26(2)
C6	C7	C8	C57	165 24(10
CU	C7	60	637)
C6	C7	C8	Fe	59.87(14)
C7	C6	C10	С9	2.7(2)
C7	C6	C10	Fe	-59.13(13)
C7	C6	В	C39	-154.29(19
		_)
C7	C6	В	C48	15.1(3)
C7	C8	C9	C10	-0.8(2)
C7	C8	C9	Fe	57.91(13)
C7	C8	C57	C58	-138.2(2)
C7	C8	C57	C59	-14.4(3)
C7	C8	C57	C60	102.7(2)
C8	C9	C10	C6	-1.2(2)
C8	C9	C10	Fe	61.14(14)
C9	C8	C57	C58	56.0(3)
С9	C8	C57	C59	179.75(19)
C9	C8	C57	C60	-63.1(3)
C10	C6	C7	C8	-3.2(2)
C10	C6	C7	Fe	57.60(13)

Atom	Atom	Atom	Atom	Angle/°
<u>C10</u>	<u> </u>	R	(39	7 2(3)
C10	C6	B	C48	176 57(18)
C10	C12	D C12	C14	0.8(2)
C12	C12 C11	C15		0.0(3)
C12	C11	D1	C15	0.7(3)
C12		PI D1	C17	-03.30(19)
C12		P1 C14		38.3(2)
C12	C13		C15	-0.7(4)
C13		C15	C16	0.5(4)
C14	C15	C16		-0.5(3)
C16			C13	-0.8(3)
C16	C11	P1	C1	121.24(17)
C16	CII	PI	C17	-136.84(17
C17	C18	C10	C20) 03(4)
C10	C10 C17	C19	C21	-0.3(4)
C10	C17	UZZ D1	C21	1.9(3)
C10	C17	PI D1		5.0(2)
C18	C17	P1 620		-99.99(19)
C18	C19	C20	C21	0.4(4)
C19	C20	C21	C22	0.7(4)
C20	C21	622	C17	-1.9(4)
622	C17	C18	C19	-0.8(3)
C22	C17	P1	C1	-175.50(17
C22	C17	P1	C11	, 79.50(18)
C23	C24	C25	C26	0.7(4)
C24	C23	C28	C27	-0.3(3)
C24	C23	P2	C2	-17.4(2)
C24	C23	P2	C29	-127.80(19
)
C24	C25	C26	C27	-1.0(4)
C25	C26	C27	C28	0.6(4)
C26	C27	C28	C23	0.1(3)
C28	C23	C24	C25	-0.1(3)
C28	C23	P2	C2	169.29(16)
C28	C23	P2	C29	58.89(18)
C29	C30	C31	C32	-0.2(3)
C30	C29	C34	C33	2.6(3)
C30	C29	P2	C2	-78.60(19)
C30	C29	P2	C23	27.6(2)
C30	C31	C32	C33	1.4(4)
C31	C32	C33	C34	-0.5(4)
C32	C33	C34	C29	-1.5(3)
C34	C29	C30	C31	-1.7(3)
C34	C29	P2	C2	103.63(17)
C34	C29	P2	C23	-150.16(16
C35	C4	C5	C1	J -167.62(19
C35	C4	C5	Fo	ן 133 גנאט
C39	C40	C41	C42	1 2(2)
C40	C70	C44	C42	1.2(3)
C40	C20	C44	C43	-2.4(3) 17061(10
C40	639	644	C47)
C40	C39	В	C6	49.9(3)
C40	C39	В	C48	-119.3(2)
C40	C41	C42	C43	-2.4(3)
C40	C41	C42	C46	176.1(2)
C41	C42	C43	C44	1.2(3)
C42	C43	C44	C39	1.2(3)
C42	C43	C44	C47	177.6(2)
C44	C39	C40	C41	1.2(3)
C44	C39	C40	C45	-176.62(19
				J

Atom	Atom	Atom	Atom	Angle/°
C44	C39	В	C6	-129.6(2)
C44	C39	B	C48	61.1(3)
C45	C40	C41	C42	1792(2)
C45	C40	C42	C42	1772(2)
C40	C42	CF0		-1/7.3(2)
C40	C49	C50	C51	0.4(3)
C49	C48	C53	C52	-0.2(3)
C49	C48	L53	C56	1/9.6/(19)
C49	C48	В	6	79.0(3)
C49	C48	В	C39	-112.1(2)
C49	C50	C51	C52	0.6(3)
C49	C50	C51	C55	-177.8(2)
C50	C51	C52	C53	-1.4(3)
C51	C52	C53	C48	1.2(3)
C51	C52	C53	C56	-178.6(2)
C53	C48	C49	C50	-0.6(3)
C53	C48	C49	C54	-177.8(2)
C53	C48	В	C6	-98.6(2)
C53	C48	В	C39	70.3(3)
C54	C49	- C50	C51	177.7(2)
C55	051	C52	C53	1770(2)
C57	C8	C9	C10	16756(19)
C57	CQ CQ	C9	Eo	1227(2)
D	C6	C7		16125(10)
D		C7	Eo	101.33(10) 127.0(2)
D		C10	re	-137.0(2)
D	60	C10	69	-102.00(10
В	C6	C10	Fe	136.20(19)
В	C39	C40	C41	-178.33(19
)
В	C39	C40	C45	3.8(3)
В	C39	C44	C43	177.18(18)
В	C39	C44	C47	0.9(3)
В	C48	C49	C50	-178.2(2)
В	C48	C49	C54	4.6(3)
В	C48	C53	C52	177.57(19)
В	C48	C53	C56	-2.6(3)
Fe	C1	C2	С3	60.34(13)
Fe	C1	C2	P2	-121.3(2)
Fe	C1	C5	C4	-60.89(14)
Fe	C1	P1	C11	-79.64(14)
Fe	C1	P1	C17	179.77(12)
Fe	C2	C3	C4	61.04(14)
Fe	C2	P2	C23	164.79(12)
Fe	C2	P2	C29	-89.90(14)
Fe	C3	C4	C5	56.84(13)
Fe	C3	C4	C35	-133.6(2)
Fe	C4	C5	C1	58.47(14)
Fe	C4	C35	C36	-31.8(3)
Fe	C4	C35	C37	91.4(3)
Fe	C4	C35	C38	-150.8(2)
Fe	C6	C7	C8	-60.83(14)
Fe	C6	C10	C9	61.79(14)
Fe	C6	B	C39	104.0(2)
Fe	C6	B	C48	-86 6(3)
Fe	C7	C8	C9	-5731(13)
Fe	C7	C8	C57	134 9(2)
Fe	C8	C9	C10	-5874(14)
Fe	C8	C57	C58	-38 0(3)
Fe	C8	C57	C59	85 8(3)
Fo	C8	C57	C60	-157 10(19
10	00	GJ7	000)
Fe	С9	C10	C6	-62.33(13)
P1	C1	C2	С3	-179.86(14

Atom	Atom	Atom	Atom	Angle/°
)
P1	C1	C2	Fe	119.81(15)
P1	C1	C2	P2	-1.4(3)
P1	C1	C5	C4	178.67(14)
P1	C1	C5	Fe	-120.44(16
)
P1	C11	C12	C13	-175.98(17
)
P1	C11	C16	C15	176.17(17)
P1	C17	C18	C19	178.69(18)
P1	C17	C22	C21	-177.58(18
)
P2	C2	C3	C4	-177.33(14
)
P2	C2	C3	Fe	121.63(13)
P2	C23	C24	C25	-173.32(18
)
P2	C23	C28	C27	173.36(17)
P2	C29	C30	C31	-179.44(17
)
P2	C29	C34	C33	-179.56(17
)

Atom	х	У	Z	U_{eq}
H3	8221	7602	2093	21
Н5	9982	9066	1483	21
H7	6634	9202	1312	20
Н9	8810	10290	2554	21
H10	8088	9530	3423	19
H12	11674	9374	1908	27
H13	12171	10250	1206	33
H14	11831	11377	1459	34
H15	10957	11625	2401	32
H16	10452	10749	3103	25
H18	11281	8029	2584	29
H10 H19	1201	7427	2763	38
H20	14076	7835	3580	30
H21	13956	8840	4227	38
H22	12491	9477	4082	30
H24	10045	7066	2716	27
H25	10884	6038	2887	36
H25 H26	11020	5466	2007	36
H20 H27	1030	5400	4013	30 22
П27 Ц20	10370	5959 6071	4903	33 20
П20 1120	10027	0971	4027	20
H3U	10937	8051	44/0	20
H31 H32	11034	8/48	5400	35
H32	100/9	9528	5904	41
H33	9020	9592	5523	3/
H34	8310	8883	4565	28
H36A	/566	/816	-104	55
H36B	/345	//01	/14	55
H36C	/426	8455	406	55
H37A	9130	8218	-311	66
H37B	9088	8876	194	66
H37C	9989	8367	364	66
H38A	9010	7059	238	77
H38B	9837	7255	920	77
H38C	8809	6990	1068	77
H41	6261	10118	4930	30
H43	6131	8101	5193	28
H45A	6248	10154	3018	40
H45B	6876	10504	3730	40
H45C	5719	10536	3608	40
H46A	5922	8851	6216	58
H46B	5978	9656	6117	58
H46C	6951	9216	6265	58
H47A	5654	7618	3404	33
H47B	5953	7357	4237	33
H47C	6772	7534	3758	33
H50	4693	7130	1222	29
H52	3167	8819	1459	29
H54A	6151	6952	2315	41
H54B	6826	7611	2446	41
H54C	6573	7280	1639	41
H55A	2355	7911	777	59
H55B	2802	7167	925	59
H55C	3054	7610	253	59
H56A	4513	9484	2944	41
H56B	3731	9682	2235	41
H56C	4853	9838	2247	41
H58A	8947	10708	485	58
H58B	9315	10606	1352	58
H58C	9178	9962	812	58

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **Compound 3**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

х	у	Z	U _{eq}
7320	10393	-92	43
7440	9629	206	43
6563	10086	381	43
7543	11357	813	49
6821	10999	1281	49
7888	11207	1675	49
	x 7320 7440 6563 7543 6821 7888	xy73201039374409629656310086754311357682110999788811207	xyz732010393-927440962920665631008638175431135781368211099912817888112071675

Citations

APEX2 suite for crystallographic software, SAINT and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. (2013)

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., A short history of ShelX, Acta Cryst., (2008), A64, 112-122.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.

Report created with ReportPlus

Experimental. A single clear orange prism-shaped crystals of Compound 4 $(0.15 \times 0.13 \times 0.05 \text{ mm}^3)$ was obtained by recrystallization, was selected and mounted on a mylar loop with oil on an Bruker D8 Venture triumph Mo diffractometer. The crystal was kept at a steady *T* = 100.0 K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program using the intrinsic phasing methods solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $C_{61}H_{67}BCl_4FeP_2Pt$, $M_r = 1265.63$, monoclinic, $P2_1/n$ (No. 14), a = 12.3692(11) Å, b = 32.732(3) Å, c = 16.6670(14) Å, $\beta = 103.454(3)^\circ$, $\alpha = \gamma = 90^\circ$, V = 6562.7(10) Å³, T = 100.0 K, Z = 4, Z' = 1, μ (MoK $_{\alpha}$) = 2.595, 57058 reflections measured, 12046 unique ($R_{int} = 0.0468$) which were used in all calculations. The final wR_2 was 0.0894 (all data) and R_1 was 0.0417 (I > 2(I)).

Compound N° CCDC	4 1902395
Formula	C ₆₁ H ₆₇ BCl ₄ FeP ₂ Pt
$D_{calc.}$ / g cm ⁻³	1.281
μ/mm^{-1}	2.595
Formula Weight	1265.63
Colour	clear orange
Shape	prism
Size/mm ³	0.15×0.13×0.05
T/K	100.0
Crystal System	monoclinic
Space Group	$P2_1/n$
a/Å	12.3692(11)
b/Å	32.732(3)
c/Å	16.6670(14)
$\alpha/^{\circ}$	90
β/°	103.454(3)
γl°	90
V/Å ³	6562.7(10)
Z	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	MoK _α
$\Theta_{min}/^{\circ}$	2.788
$\Theta_{max}/^{\circ}$	25.462
Measured Refl.	57058
Independent Refl.	12046
Reflections with I >	9746
2(I)	
R _{int}	0.0468
Parameters	643
Restraints	0
Largest Peak	1.843
Deepest Hole	-1.277
GooF	1.027
wR_2 (all data)	0.0894
wR_2	0.0847
R_1 (all data)	0.0573
R_1	0.0417

Crystal Data and Experimental

A clear orange prism-shaped crystal with dimensions $0.15 \times 0.13 \times 0.05 \text{ mm}^3$ was mounted on a mylar loop with oil. Data were collected using an Bruker D8 Venture triumph Mo diffractometer equipped with an Oxford Cryosystems low-temperature device operating at T = 100.0 K. Data were measured using ϕ and ω scans' using MoK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker). The maximum resolution that was achieved was $\Theta = 25.462^{\circ}$ (0.83 Å). The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program APEX2 (Bruker) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 9788 reflections, 17% of the observed reflections.

A clear orange prism-shaped crystal with dimensions $0.15 \times 0.13 \times 0.05 \text{ mm}^3$ as mounted on a mylar loop with oil. X-ray diffraction data were collected using a Bruker D8 Venture triumph Mo diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at T = 100.0 K. Data were measured using ϕ and ω scans using MoK_{α} radiation (X-ray tube, 50 kV, 30 mA). The total number of runs and images was based on the strategy calculation from the program **APEX2** (Bruker). The maximum resolution achieved was $\Theta = 25.462^{\circ}$.

Cell parameters were retrieved using the **SAINT** (Bruker, V8.34A, 2014) software and refined using **SAINT** (Bruker, V8.34A, 2014) on 9788 reflections, 18 % of the observed reflections. Data reduction was performed using the **SAINT** (Bruker, V8.34A, 2014) software which corrects for Lorentz polarisation. The final completeness is 98.10 out to 25.462 in Θ . The absorption coefficient μ of this material is 2.644 at this wavelength (λ = 0.71073) and the minimum and maximum transmissions are 0.6852 and 0.7452.

The structure was solved in the space group $P2_1/n$ (# 14) by intrinsic phasing methods using the **ShelXT** (Sheldrick, 2015) structure solution program and refined by Least Squares using version 2014/7 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. During the structure refinement, the atoms of CH_2Cl_2 solvent molecules were observed but these molecules are badly disordered and any attempt to modelise these solvent molecules failed. The Squeeze routine in Platon (Spek, A.L. (2003), J. Appl. Cryst. 36, 7-13) was used and the hkl intensity were modified accordingly for a total of 270 solvent electrons per unit cell, ie about 1.6 dichloromethane molecule par asymetric (or formula) unit, which gives in total 2.6 dichloromethane molecules.

Atom	х	У	Z	U_{eq}
Pt	10243.9(2)	7561.6(2)	92.8(2)	16.73(6)
Fe	8040.1(5)	6560.8(2)	-587.3(4)	15.49(15)
Cl2	11195.7(10)	7747.6(4)	1424.5(7)	24.8(3)
Cl1	11862.2(11)	7715.0(4)	-367.1(8)	31.2(3)
Cl3	4305.7(15)	7188.7(6)	391.6(12)	60.3(5)
Cl4	2610.6(17)	6568.7(6)	412.4(12)	67.2(5)
P1	9281.7(10)	7419.2(4)	-1175.0(7)	15.8(2)
P2	8630.9(10)	7472.4(4)	463.9(7)	14.5(2)
C1	8079(4)	7132.6(14)	-1076(3)	14.5(10)
C2	7780(4)	7148.6(14)	-293(3)	14.8(10)
C29	8586(4)	7294.9(14)	1480(3)	18.0(10)
C34	9439(4)	7061.9(15)	1946(3)	23.5(11)
C33	9392(5)	6936.6(15)	2726(3)	26.7(12)
C32	8495(4)	7041.0(15)	3050(3)	24.8(12)
C31	7631(4)	7271.9(15)	2589(3)	23.0(11)
C30	7677(4)	7397.6(14)	1808(3)	19.9(10)
C23	7874(4)	7957.4(14)	343(3)	16.9(10)
C28	6758(4)	7986.5(16)	-52(3)	26.4(12)
C27	6240(5)	8358.8(17)	-131(3)	30.1(13)

Table 7: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **Compound 4**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	x	V	7	
$\overline{C26}$	6804(5)	8705 3(17)	177(3)	31 5(13)
C25	7915(5)	8680 2(17)	572(4)	42 4(16)
C24	8441(5)	83069(16)	655(4)	32 4(13)
C8	8712(4)	60299(14)	-1012(3)	22.7(13)
CO	0712(4) 0557(4)	63020(14)	-1012(3)	181(10)
C10	9337(4)	6352.0(14)	-391(3)	10.1(10) 17.6(10)
C10 C6	9447(4)	6110 E(14)	220(3)	17.0(10) 19.7(10)
	0310(4) 0216(5)	5110.3(14)	340(3) 1120(4)	10.7(10)
D C40	0310(3)	5902.5(17) F707 ((1F)	1129(4)	21.0(12)
C40	9301(4)	5/8/.0(15)	1828(3)	22.5(11)
C49	9325(5)	5812.0(10)	2007(3)	29.7(13)
C50	10259(5)	5/14.9(17)	32/5(3)	36.6(14)
052	11256(5)	5528.1(15)	2292(3)	30.1(13)
C53	10351(4)	5631.1(14)	1655(3)	22.7(11)
C56	10509(4)	5534.4(16)	797(3)	27.4(12)
C54	8305(5)	5945.0(18)	2940(3)	37.1(14)
C39	7118(4)	5726.9(15)	1126(3)	22.6(11)
C40	6228(4)	5972.1(16)	1226(3)	25.9(12)
C41	5199(4)	5799.1(18)	1210(3)	30.4(13)
C43	5871(5)	5145.3(18)	990(4)	37.7(14)
C44	6928(4)	5304.6(16)	1015(3)	26.8(12)
C47	7849(5)	5018.1(16)	915(4)	36.7(14)
C45	6376(5)	6419.0(16)	1421(3)	31.8(13)
C7	8050(4)	5936.1(14)	-452(3)	19.4(10)
C57	8695(5)	5823.8(15)	-1835(3)	27.3(12)
C58	8554(5)	6127.2(16)	-2538(3)	30.5(13)
C59	9825(5)	5609.0(18)	-1727(4)	40.0(15)
C60	7794(5)	5497.2(17)	-2026(3)	37.2(14)
C5	7244(4)	6893.4(14)	-1608(3)	19.1(10)
C4	6438(4)	6768.2(15)	-1175(3)	21.3(11)
C3	6767(4)	6922.7(14)	-362(3)	18.0(10)
C35	5339(4)	6558.5(16)	-1555(3)	29.0(12)
C36	4959(4)	6281.2(17)	-932(3)	33.3(13)
C38	4508(4)	6902.7(19)	-1822(4)	43.2(16)
C37	5416(5)	6305.1(19)	-2308(4)	41.3(15)
C22	7680(4)	8000.2(15)	-1947(3)	24.1(11)
C21	7380(5)	8382.0(16)	-2296(3)	29.9(12)
C20	8192(5)	8658.1(16)	-2376(3)	34.4(14)
C19	9304(5)	8558.2(16)	-2116(3)	30.3(13)
C18	9610(4)	8181.2(15)	-1764(3)	24.8(11)
C11	9921(4)	7161 1(14)	-1908(3)	198(11)
C12	10907(4)	6942 6(15)	-1654(3)	25 1(12)
C13	11331(5)	67270(16)	-2226(4)	36 6(15)
C14	10807(6)	67386(18)	-3042(4)	43 0(17)
C15	9845(6)	6958 6(18)	-3300(3)	39.8(16)
C16	9393(5)	7170 7(15)	-2737(3)	267(12)
C61	3292(6)	6998(2)	900(4)	50.7(12)
C17	8790(4)	7890 0(1/)	-1686(2)	17 4(10)
C51	11220(5)	5576 4(17)	3106(4)	29 4(15)
C42	1006(5)	5370.4(17)	100/(2)	37.7(13) 26 1(14)
C55	12251(2)	5300.3(19)	2777(1)	50.1(14) 61(2)
C16	12201(D) 2002(E)	54/5(4) E201(2)	3///(4) 1116(4)	UI(4) E4 1(10)
U40	3882(5)	5201(2)	1110(4)	54.1(19)

Table 8: Anisotropic Displacement Parameters (×10⁴) **Compound 4**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	<i>U</i> ₁₁	U ₂₂	U 33	U 23	<i>U</i> ₁₃	U ₁₂
Pt	14.34(10)	25.08(10)	11.19(9)	-2.61(8)	3.86(7)	-3.60(8)
Fe	13.2(3)	19.3(4)	13.8(3)	3.1(3)	2.8(3)	-2.6(3)
Cl2	19.7(6)	38.5(7)	14.3(6)	-6.3(5)	0.1(5)	-1.6(5)
Cl1	21.8(7)	50.0(8)	24.7(7)	-9.6(6)	11.1(6)	-16.2(6)
Cl3	52.6(11)	66.3(12)	64.5(12)	-3.6(9)	18.6(9)	17.1(9)
Cl4	67.2(13)	66.3(12)	59.3(12)	-1.7(9)	-3.2(10)	1.2(10)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	<i>U</i> ₁₂
P1	15.7(6)	21.4(6)	11.2(6)	-1.3(5)	4.8(5)	-4.9(5)
P2	13.4(6)	20.3(7)	11.4(6)	1.8(5)	5.9(5)	1.7(5)
C1	12(2)	20(2)	11(2)	2.2(18)	2.2(19)	0.4(19)
C2	8(2)	22(3)	14(2)	3.1(18)	2.1(19)	2.4(18)
C29	24(3)	18(2)	14(2)	0.9(18)	7(2)	0(2)
C34	25(3)	29(3)	19(3)	0(2)	9(2)	7(2)
C33	33(3)	26(3)	20(3)	9(2)	5(2)	11(2)
C32	37(3)	27(3)	12(3)	0(2)	11(2)	-3(2)
C30	24(3)	23(3)	20(3)	0(2)	13(2) 12(2)	3(2) 1(2)
C23	23(3)	21(3)	9(2)	$\frac{4}{2}$	7(2)	5(2)
C28	31(3)	32(3)	14(3)	-5(2)	2(2)	7(2)
C27	32(3)	44(4)	13(3)	-2(2)	2(2)	15(3)
C26	37(3)	27(3)	32(3)	10(2)	12(3)	14(3)
C25	42(4)	20(3)	64(4)	1(3)	11(3)	3(3)
C24	24(3)	26(3)	47(4)	6(3)	6(3)	1(2)
C8	29(3)	14(2)	26(3)	3(2)	9(2)	0(2)
C9	18(3)	19(3)	18(3)	4.2(19)	6(2)	0(2)
C10 C6	16(2)	20(3)	$\frac{1}{(3)}$	3.2(19)	5(2)	1(2)
R	24(3)	10(2) 21(3)	20(3)	3.1(19) 1(2)	3(2) 13(3)	3(2)
C48	24(3) 28(3)	20(3)	19(3)	7(2)	3(2)	-4(2)
C49	36(3)	27(3)	25(3)	7(2)	5(2)	-2(2)
C50	55(4)	30(3)	23(3)	1(2)	4(3)	4(3)
C52	27(3)	19(3)	36(3)	-2(2)	-9(3)	1(2)
C53	23(3)	18(3)	24(3)	2(2)	1(2)	-3(2)
C56	26(3)	26(3)	30(3)	8(2)	6(2)	3(2)
C54	45(4)	47(4)	19(3)	6(2)	8(3)	-1(3)
C39	24(3)	27(3)	17(3)	9(2)	6(2)	0(2)
C40	30(3)	51(3)	18(3)	8(2)	10(2)	-5(2)
C43	32(3)	36(3)	47(4)	-6(3)	$\frac{4(2)}{14(3)}$	-15(3)
C44	20(3)	36(3)	26(3)	5(2)	8(2)	0(2)
C47	35(4)	25(3)	50(4)	0(3)	9(3)	-3(2)
C45	36(3)	34(3)	29(3)	9(2)	17(3)	5(3)
C7	22(3)	15(2)	20(3)	5.1(19)	3(2)	-4(2)
C57	36(3)	24(3)	24(3)	-3(2)	10(2)	-7(2)
C58	38(3)	29(3)	28(3)	-2(2)	14(3)	-6(2)
C59	48(4) 52(4)	$\frac{3}{(3)}$	36(3)	-8(3)	11(3)	9(3)
C5	55(4) 17(3)	32(3) 23(3)	50(5) 14(2)	-9(2)	$^{14(3)}_{-3(2)}$	-13(3)
C4	17(3) 12(2)	21(3)	29(3)	10(2)	0(2)	0(2)
C3	12(2)	23(3)	19(3)	5(2)	3(2)	2.0(19)
C35	19(3)	35(3)	29(3)	9(2)	-3(2)	-7(2)
C36	23(3)	37(3)	38(3)	10(3)	3(3)	-11(2)
C38	17(3)	50(4)	57(4)	17(3)	-5(3)	-10(3)
C37	30(3)	55(4)	35(3)	-7(3)	-1(3)	-18(3)
C22	28(3)	26(3)	19(3)	1(2)	7(2)	-9(2)
C20	24(3) 46(4)	29(3)	35(3)	9(Z) E(2)	2(2) 12(2)	2(2)
C20 C10	40(4) 33(3)	23(3)	40(3) 37(3)	3(2)	12(3)	-3(3)
C18	27(3)	26(3)	24(3)	0(2)	9(2)	-6(2)
C11	21(3)	20(3)	23(3)	-1(2)	13(2)	-6(2)
C12	21(3)	22(3)	36(3)	-3(2)	15(2)	-12(2)
C13	33(3)	22(3)	64(4)	-6(3)	32(3)	-9(2)
C14	62(5)	30(3)	52(4)	-17(3)	46(4)	-18(3)
C15	67(5)	37(3)	21(3)	-11(2)	23(3)	-21(3)
C16	41(3)	24(3)	18(3)	1(2)	12(2)	-10(2)
U01 C17	53(4) 22(2)	57(4)	39(4) 10(2)	U(3)	8(3) 8(2)	13(3)
C51	22(3) 47(4)	21(3) 31(3)	10(2) 30(3)	-0.0(18) -9(2)	0(2) -12(3)	-3(2) 10(3)
C42	23(3)	55(4)	33(3)	-4(3)	13(3)	-12(3)
C55	68(5)	63(5)	35(4)	-17(3)	-26(4)	28(4)

Atom	U 11	U 22	U 33	U 23	U ₁₃	<i>U</i> ₁₂
C46	29(4)	77(5)	60(5)	-18(4)	17(3)	-21(3)

Atom	Atom	Length / Å
Dt	<u>(12</u>	2 3383(12)
Dt	Cl1	2.3303(12) 2 3581(12)
Pt	P1	2.3301(12)
Pt	P2	2.2177(12) 2 2411(12)
Fe	C1	2.2111(12) 2 046(4)
Fe	C2	2.010(1)
Fe	C8	2 118(5)
Fe	C9	2.060(5)
Fe	C10	2.052(5)
Fe	C6	2.100(5)
Fe	C7	2.057(5)
Fe	C5	2.066(5)
Fe	C4	2.108(5)
Fe	С3	2.073(5)
Cl3	C61	1.782(7)
Cl4	C61	1.739(7)
P1	C1	1.799(5)
P1	C11	1.811(5)
P1	C17	1.822(5)
P2	C2	1.790(5)
P2	C29	1.803(5)
P2	C23	1.830(5)
C1	C2	1.438(6)
C1	C5	1.428(6)
C2	C3	1.437(6)
C29	C34	1.384(7)
C29	C30	1.401(6)
C34	C33	1.377(7)
C33	C32	1.384(7)
C32	C31	1.386(7)
C31	C30	1.379(7)
C23	C28	1.387(7)
C23	C24	1.379(7)
C28	C27	1.369(7)
C27	C26	1.368(8)
C26	C25	1.382(8)
C25	C24	1.376(7)
C8	C9	1.427(7)
C8	C7	1.412(7)
C8	C57	1.524(7)
С9	C10	1.399(6)
C10	C6	1.434(6)
C6	В	1.563(7)

 Table 9: Bond Lengths in Å for Compound 4.

Atom	Atom	Length/Å
C6	C7	1.442(7)
В	C48	1.571(8)
В	C39	1.589(7)
C48	C49	1.412(7)
C48	C53	1.417(7)
C49	C50	1.386(8)
C49	C54	1.502(8)
C50	C51	1.382(8)
C52	C53	1.393(7)
C52	C51	1.371(8)
C53	C56	1.520(7)
C39	C40	1.403(7)
C39	C44	1.407(7)
C40	C41	1.387(7)
C40	C45	1.501(7)
C41	C42	1.379(8)
C43	C44	1.400(7)
C43	C42	1.382(8)
C44	C47	1.514(7)
C57	C58	1.515(7)
C57	C59	1.537(8)
C57	C60	1.523(7)
C5	C4	1.420(7)
C4	C3	1.414(7)
C4	C35	1.523(7)
C35	C36	1.534(7)
C35	C38	1.521(8)
C35	C37	1.526(8)
C22	C21	1.391(7)
C22	C17	1.381(7)
C21	C20	1.380(7)
C20	C19	1.381(8)
C19	C18	1.381(7)
C18	C17	1.400(7)
C11	C12	1.392(7)
C11	C16	1.384(7)
C12	C13	1.385(7)
C13	C14	1.364(9)
C14	C15	1.371(9)
C15	C16	1.385(7)
C51	C55	1.511(8)
C42	C46	1.514(8)

Table 10: Bond Angles in ° for **Compound 4**.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl2	Pt	Cl1	88.57(4)	C1	Fe	C8	124.76(18)
P1	Pt	Cl2	176.56(5)	C1	Fe	C9	105.63(18)
P1	Pt	Cl1	92.46(4)	C1	Fe	C10	118.01(18)
P1	Pt	P2	85.46(4)	C1	Fe	C6	153.51(18)
P2	Pt	Cl2	93.20(4)	C1	Fe	C7	162.35(18)
Р2	Pt	Cl1	174.26(5)	C1	Fe	C5	40.64(18)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle
C1	Fe	C4	68.11(18)	C34	C29	P2	121.2(4)
C1	Fe	C3	68.82(18)	C34	C29	C30	119.3(4)
C2	Fe	C1	41.33(17)	C30	C29	P2	119.5(4)
C2	Fe	C8	162.79(18)	C33	C34	C29	119.9(5
C2	Fe	С9	125.89(18)	C34	C33	C32	120.6(5
C2	Fe	C10	108.28(18)	C33	C32	C31	120.2(4
C2	Fe	C6	120.57(18)	C30	C31	C32	119.3(5
C2	Fe	C7	155.90(18)	C31	C30	C29	120.7(5
C2	Fe	C5	68.15(18)	C28	C23	P2	122.6(4
C2	Fe	C4	67.82(18)	C24	C23	P2	118.4(4
C2	Fe	C3	40.97(17)	C24	C23	C28	119.0(5
С9	Fe	C8	39.92(19)	C27	C28	C23	119.9(5
С9	Fe	C6	67.55(18)	C26	C27	C28	121.0(5
C9	Fe	C5	118.33(19)	C27	C26	C25	119.6(5
C9	Fe	C4	152.82(19)	C24	C25	C26	119.7(5
C9	Fe	C3	165.05(19)	C25	C24	C23	120.8(5
C10	Fe	C8	66.93(19)	С9	C8	Fe	67.8(3)
C10	Fe	C9	39.78(18)	С9	C8	C57	125.1(4
C10	Fe	C6	40.38(18)	C7	C8	Fe	67.9(3)
C10	Fe	C7	67.40(19)	C7	C8	С9	106.3(4
C10	Fe	C5	152.07(18)	C7	C8	C57	127.6(4
C10	Fe	C4	166.74(19)	C57	C8	Fe	137.7(4
C10	Fe	C3	129.40(18)	C8	C9	Fe	72.2(3)
C6	Fe	C8	67.38(18)	C10	C9	Fe	69.8(3)
C6	Fe	C4	129.57(18)	C10	C9	C8	108.9(4)
C7	Fe	C8	39 50(18)	C9	C10	Fe	70 4(3)
.7	Fe	C9	67.01(19)	C9	C10	C6	109.4(4)
.7	Fe	C6	40.56(18)	C6	C10	Fe	71.6(3)
7	Fe	C5	127 14(19)	C10	C6	Fe	68.0(3)
.7	Fe	C4	110 61(19)	C10	C6	B	130 5(4
C7	Fe	C3	122.23(19)	C10	C6	C7	104.9(4
25	Fe	C8	107.83(19)	B	C6	Fe	1491(4
65	Fe	C6	165 44(19)	C7	C6	Fe	68 1 (3)
C5	Fe	C4	3977(18)	C7	C6	B	118 3(4
35 75	Fe	C3	67 13(19)	С6 Сб	B	C48	117 8(4
25 74	Fe	C8	1206(2)	C6	B	C39	1195(4)
2	Fe	C8	15455(19)	C48	B	C39	121 5(4
C3	Fe	C6	110 86(18)	C49	C48	B	120.7(5)
C3	Fe	C4	39 52(19)	C49	C48	C53	1167(5
C1	P1	Pt	10709(15)	C53	C48	B	122 5(4)
C1	Р1	C11	108.6(2)	C48	C49	C54	122.5(1
C1	Р1	C17	100.0(2) 107.4(2)	C50	C49	C48	1199(5)
C11	P1	Dt	121 23(17)	C50	C49	C54	1175(5
211	Р1	C17	103 7(2)	C51	C50	C49	123 215
C17	P1	Pt	108,10(15)	C51	C52	C53	122.1(5
2	P2	Pt	107.34(15)	C48	C53	C56	124 9(4
22	P2	C29	109 2(2)	C52	C53	C48	120.8(5
C2	P2	C23	103.5(2)	C52	C53	C56	114 2(5)
C29	P2	Pt	121 67(17)	C40	C39	B	123 3(4)
229	P2	(23	104 9(2)	C40	C39	C44	117 8(5
223	P2	Pt	108 79(16)	C44	C39	B	118 8(4)
2 <u>2</u> 0 21	<u>C1</u>	Fe	127 6(2)	C39	C40	C45	121 6(5
22	C1	Fe	68 7(3)	C41	C40	(39	121.0(3
- <u>-</u> -2	C1	P1	117 2(2)	C41	C40	C45	117 2(5
ב <u>ר</u> ק	C1	Fo	70 4(2)	C41 C42	C41	C40	122 615
25 75	C1	D1	136 2(<i>1</i>)	C42	C41 C42	C40 C4A	122.0(5
65 65	C1	() ()	106 4 (4)	C70	C43 C4A	C44 C47	122.3(5 121.1(E
00 D2	C2	62 Fo	120.7(7)	C12	C11	C20	110 7(5)
1 L C1	C2	Fo	127.2(2) 60.0(2)	C43	C44 C44	C37	110.2(E)
	64	ге D2	115 2(2)	C43 C8	C7	647 Eo	117.2(3 77 6(3)
C1	C^{2}	F /	1133131	LO	L/	ге	12.0131
C1 C1 C3	C2	Fo	71 2(2)	CO	67	66	110 1(4)
C1 C1 C3	C2 C2 C2	Fe	71.2(3)	C8	C7	C6 Ea	110.1(4)

Atom	Atom	Atom	Angle/°
C58	C57	C8	112.4(4)
C58	C57	C59	109.2(4)
C58	C57	C60	110.5(5)
C60	C57	C8	110.8(4)
C60	C57	C59	107.7(5)
C1	C5	Fe	68.9(3)
C4	C5	Fe	71.7(3)
C4	C5	C1	109.5(4)
C5	C4	Fe	68.5(3)
C5	C4	C35	125.6(5)
C3	C4	Fe	68.9(3)
C3	C4	C5	107.7(4)
C3	C4	C35	126.1(4)
C35	C4	Fe	134.4(4)
C2	C3	Fe	67.9(3)
C4	C3	Fe	71.6(3)
C4	C3	C2	108.2(4)
C4	C35	C36	111.7(4)
C4	C35	C37	111.5(4)
C38	C35	C4	105.4(4)
C38	C35	C36	110.1(5)
C38	C35	C37	109.2(5)
C37	C35	C36	108.9(5)

Table 11: Torsion Angles in ° for **Compound 4**.

Atom	Atom	Atom	Atom	Angle/°
Pt	P1	C1	Fe	-65.9(3)
Pt	P1	C1	C2	17.2(4)
Pt	P1	C1	C5	-167.1(5)
Pt	P1	C11	C12	18.6(5)
Pt	P1	C11	C16	-163.7(3)
Pt	P1	C17	C22	-116.3(4)
Pt	P1	C17	C18	60.0(4)
Pt	P2	C2	Fe	63.3(3)
Pt	P2	C2	C1	-20.8(4)
Pt	P2	C2	C3	167.5(4)
Pt	P2	C29	C34	-25.5(5)
Pt	P2	C29	C30	153.8(3)
Pt	P2	C23	C28	132.4(4)
Pt	P2	C23	C24	-47.4(4)
Fe	C1	C2	P2	124.8(3)
Fe	C1	C2	C3	-61.2(3)
Fe	C1	C5	C4	60.4(3)
Fe	C2	C3	C4	-60.4(3)
Fe	C8	C9	C10	60.5(3)
Fe	C8	C7	C6	-61.8(3)
Fe	C8	C57	C58	29.0(7)
Fe	C8	C57	C59	148.1(5)
Fe	C8	C57	C60	-95.3(6)
Fe	C9	C10	C6	61.3(3)
Fe	C10	C6	В	-150.8(5)
Fe	C10	C6	C7	58.4(3)
Fe	C6	В	C48	-140.9(6)
Fe	C6	В	C39	51.5(9)
Fe	C6	C7	C8	62.6(3)
Fe	C5	C4	C3	57.9(3)
Fe	C5	C4	C35	-130.0(5)
Fe	C4	C3	C2	58.2(3)
Fe	C4	C35	C36	57.1(7)
Fe	C4	C35	C38	176.7(4)

Atom	Atom	Atom	Atom	Angle/°
Fe	C4	C35	C37	-65.0(6)
P1	C1	C2	Fe	-122.4(3)
P1	C1	C2	P2	2.4(5)
P1	C1	C2	C3	176.4(3)
P1	C1	C5	Fe	124.4(5)
P1	C1	C5	C4	-175.2(4)
P1	C11	C12	C13	175.7(4)
P1	C11	C16	C15	-177.0(4)
P2	C2	C3	Fe	-127.4(5)
P2	C2	C3	C4	172.1(4)
P2	C29	C34	C33	178.8(4)
P2	C29	C30	C31	-178.9(4)
P2	C23	C28	C27	-179,4(4)
P2	C23	C24	C25	179.2(5)
C1	P1	C11	C12	-106.0(4)
C1	P1	C11	C16	71.8(4)
C1	P1	C17	C22	-1.1(5)
C1	P1	C17	C18	175.2(3)
C1	C2	C3	Fe	60.5(3)
C1	C2	C3	C4	0.0(5)
C1	C5	C4	Fe	-58.7(3)
C1	C5	C4	C3	-0.8(5)
C1	C5	C4	C35	171.3(4)
C2	P2	C29	C34	100.3(4)
C2	P2	C29	C30	-80.3(4)
C2	P2	C23	C28	18.5(4)
C2	P2	C23	C24	-161.3(4)
C2	C1	C5	Fe	-59.6(3)
C2	C1	C5	C4	0.8(5)
C29	P2	C2	Fe	-70.5(3)
C29	P2	C2	C1	-154.5(3)
C29	P2	C2	C3	33.8(5)
C29	P2	C23	C28	-96.0(4)
C29	P2	C23	C24	84.3(4)
C29	C34	C33	C32	0.1(8)
C34	C29	C30	C31	0.5(7)
C34	C33	C32	C31	0.3(8)
C33	C32	C31	C30	-0.3(8)
C32	C31	C30	C29	-0.1(7)
C30	C29	C34	C33	-0.5(7)
C23	P2	C2	Fe	178.2(3)
C23	P2	C2	C1	94.2(4)
C23	P2	C2	C3	-77.5(5)
C23	P2	C29	C34	-149.3(4)
C23	P2	C29	C30	30.1(4)
C23	C28	C27	C26	-0.2(8)
C28	C23	C24	C25	-0.6(8)
C28	C27	C26	C25	0.1(8)
C27	C26	C25	C24	-0.3(9)
C26	C25	C24	C23	0.5(9)
C24	C23	C28	C27	0.4(7)
C8	C9	C10	Fe	-62.0(3)
C8	C9	C10	C6	-0.7(5)
(9	C8	C7	Fe	57.1(3)
C9	C8	C7	C6	-4.7(5)
C9	60	C57	C58	-66.0(7)
L9 60	L8 CO	L57	L59	53.2(6)
L9 C0	եԾ 610	L5/	L6U	109.8(5)
ί. 20	L10	L6	ге	-60.5(3)
L9 C0	L1U C10		Б С7	148.7(5)
C10		են Խ	U/ C40	-2.1(5)
C10		Б D	L48 C20	-22.9(8)
C10	LD	р	639	109.2(2)

Atom	Atom	Atom	Atom	Angle/°
C10	С6	С7	Fe	-58.4(3)
C10	C6	C7	C8	4.2(5)
C6	В	C48	C49	144.2(5)
C6	В	C48	C53	-39.9(7)
C6	В	C39	C40	-78.4(6)
C6	В	C39	C44	101.3(6)
В	C6	C7	Fe	146.5(4)
В	C6	C7	C8	-150.9(4)
В	C48	C49	C50	-179.2(5)
В	C48	C49	C54	0.4(8)
В	C48	C53	C52	-179.2(5)
В	C48	C53	C56	-3.4(7)
В	C39	C40	C41	179.5(5)
В	C39	C40	C45	-5.7(7)
В	C39	C44	C43	-178.5(5)
В	C39	C44	C47	1.2(7)
C48	В	C39	C40	114.5(6)
C48	В	C39	C44	-65.8(7)
C48	C49	C50	C51	-2.5(9)
C49	C48	C53	C52	-3.1(7)
C49	C48	C53	C56	172.7(5)
C49	C50	C51	C52	-1.4(9)
C49	C50	C51	C55	179.7(6)
C53	C48	C49	C50	4.7(7)
C53	C48	C49	C54	-175.7(5)
C53	C52	C51	C50	3.0(8)
C53	C52	C51	C55	-178.0(5)
C54	C49	C50	C51	177.8(5)
C39	В	C48	C49	-48.4(7)
C39	В	C48	C53	127.5(5)
C39	C40	C41	C42	-0.3(8)
C40	C39	C44	C43	1.2(7)
C40	C39	C44	C47	-179.1(5)
C40	C41	C42	C43	-0.2(8)
C40	C41	C42	C46	1/7.3(5)
C44	C39	C40	C41	-0.2(7)
C44	C39	C40	C45	174.0(5)
C44	C43	C42	C41	1.2(9)
C44	C40	C42	C40	-170.3(0)
C7	C40	C41	C42	-173.4(3) 572(2)
C7	C8	C9	C10	33(5)
C7	C8	C57	C58	1271(5)
C7	C8	C57	C59	-113 7(6)
C7	C8	C57	C60	2 8(7)
C7	C6	B	C48	124.8(5)
C7	C6	B	C39	-429(7)
C57	C8	C9	Fe	133.6(5)
C57	C8	C9	C10	-1659(5)
C57	C8	C7	Fe	-134.0(5)
C57	C8	C7	C6	164.2(5)
C5	C1	C2	Fe	60.7(3)
C5	C1	C2	P2	-174.4(3)
C5	C1	C2	C3	-0.5(5)
C5	C4	C3	Fe	-57.7(3)
C5	C4	C3	C2	0.5(5)
C5	C4	C35	C36	151.2(5)
C5	C4	C35	C38	-89.2(6)
C5	C4	C35	C37	29.2(7)
C3	C4	C35	C36	-38.2(7)
C3	C4	C35	C38	81.4(6)
C3	C4	C35	C37	-160.2(5)
C35	C4	C3	Fe	130.3(5)

Atom	Atom	Atom	Atom	Angle/°
C35	C4	C3	C2	-171.5(4)
C22	C21	C20	C19	0.3(8)
C21	C22	C17	P1	176.8(4)
C21	C22	C17	C18	0.6(7)
C21	C20	C19	C18	-0.7(8)
C20	C19	C18	C17	1.1(8)
C19	C18	C17	P1	-177.5(4)
C19	C18	C17	C22	-1.1(7)
C11	P1	C1	Fe	66.6(3)
C11	P1	C1	C2	149.8(4)
C11	P1	C1	C5	-34.6(6)
C11	P1	C17	C22	113.8(4)
C11	P1	C17	C18	-69.9(4)
C11	C12	C13	C14	2.2(7)
C12	C11	C16	C15	0.8(7)
C12	C13	C14	C15	-1.1(8)
C13	C14	C15	C16	-0.1(8)
C14	C15	C16	C11	0.3(8)
C16	C11	C12	C13	-2.0(7)
C17	P1	C1	Fe	178.2(3)
C17	P1	C1	C2	-98.7(4)
C17	P1	C1	C5	77.0(5)
C17	P1	C11	C12	140.0(4)
C17	P1	C11	C16	-42.2(4)
C17	C22	C21	C20	-0.2(8)
C51	C52	C53	C48	-0.7(8)
C51	C52	C53	C56	-176.9(5)
C42	C43	C44	C39	-1.8(9)
C42	C43	C44	C47	178.6(5)

Atom				
	X	<u>y</u>	Z	U _{eq}
H34	10056.45	6988.44	1727.41	28
H33	9979.3	6777.19	3043.91	32
H32	8472.75	6954.18	3589.34	30
H31	7013.03	7342.69	2808.99	28
H30	7086.67	7555.55	1489.12	24
H28	6354.27	7748.34	-267.73	32
H27	5475.9	8376.61	-403.91	36
H26	6433.64	8961.73	118.76	38
H25	8314.17	8919.62	785.62	51
H24	9203.92	8289.76	930.94	39
H9	10105.2	6428.19	-822.99	22
H10	9914.73	6517.14	627.39	21
H50	10225.36	5744.68	3835.25	44
H52	11905.51	5420.82	2158.33	36
H56A	9780.73	5512.08	411.47	41
H56B	10909.62	5275.32	810.96	41
H56C	10937.5	5753.51	616.77	41
H54A	7708.82	5745.54	2751.8	56
H54B	8064.91	6213.26	2702.95	56
H54C	8474.8	5962.63	3543.25	56
H41	4611.64	5971.75	1281.95	36
H43	5749.19	4860.83	898.4	45
H47A	8464.33	5034.05	1405.17	55
H47B	8114.08	5097.09	426.69	55
H47C	7564.75	4737.63	847.99	55
H45A	7076.76	6513.33	1307.37	48
H45B	6390.04	6463.42	2005.28	48
H45C	5756.15	6572.26	1079.17	48
H7	7391.49	5775.94	-578.15	23
H58A	9086.7	6351.31	-2380.01	46
H58B	7796	6236.62	-2660.91	46
H58C	8688 85	5989 97	-3028 29	46
H59A	9969.26	5443.05	-1223.79	60
H59B	10412.19	5814.2	-1684 37	60
H59C	9812.96	5432.6	-2204 09	60
H60A	7931	5292.18	-1585 49	56
H60B	780631	5365 58	-2552.05	56
H60C	706619	5623 78	-2063.83	56
H5	7000.17	6828.2	-2165 76	23
H3	6383.62	6883.8	64 1	23
H364	4871 77	6443 99	-457 33	50
H36R	5515.8	6067 53	-745 2	50
H36C	424616	6154 79	-1194.23	50
H38V	4400.65	7049.62	-1174.23	50 65
H38B	2706.1	67885	-1334.33	65 65
1130D 1130D	170016	7001 61	2123.23	65
H30C H27A	4790.10	7091.01 6001 EQ	-2101.40	62
П3/А Ц27D	5979.51	6402.20	-2143.20 2721 E	62
П37D Ц27С	3024.34	0402.39	-2/21.3	02
H3/C	4093.84	01/0.50	-2545.22	02
П44 1121	/123.11	/010.03	-1007.12	27 26
HZ1 H20	001/./	0452.01	-24/8.11	30 41
П2U	/984./1	0910.92	-2011.91	41 26
П19 U10	9057.21 10272.02	0/40./3	-21/9.50	30 20
H18	10373.93	8113.48	-1576.43	30
HIZ	11287.53	6941.45	-1088.42	30
H13	11989.7	6570.32	-2050.16	44
H14	11108.87	6593.71	-3433.32	52

Table 12: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **Compound 4**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	x	У	Z	U _{eq}
H15	9486.2	6965.64	-3869.13	48
H16	8725.13	7321.7	-2918.59	32
H61A	3659.62	6926.96	1476.45	60
H61B	2738.58	7214.4	915.43	60
H55A	12016.45	5355.17	4249.69	92
H55B	12681.65	5722.6	3951.35	92
H55C	12712.76	5275.98	3566.7	92
H46A	3289.54	5397.36	895.31	81
H46B	3869.78	5133.08	1686.29	81
H46C	3765.75	4952.11	779.51	81

 Table 13: Solvent masking (Olex2) information for Compound 4.

No	Х	у	Z	V	е	Content
1	0.344	0.000	0.000	759.4	135.2	CH2Cl2
2	-0.489	0.500	0.500	759.4	135.2	CH2Cl2