Electronic Supplementary Information

Re-understanding photoinduced charge transfer process of ammonium polyoxomolybdate

Li Li, Yang Hua, Xiao-Nan Li, Yu Guo, and Hong Zhang*
Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
Fax:+86-0431-85098827; Tel:+86-0431-85099372; E-mail: hope20130122@163.com

Table of contents

Fig. S1 ${ }^{1} \mathrm{H}$ NMR of 4-phenylpyridine hydrochloride (4PPHCl) in DMSO.
Fig. S2 ${ }^{1} \mathrm{H}$ NMR of 4-phenylpyridine (4PP) in DMSO.
Fig. S3 FT-IR spectra of 4-phenylpyridine (left) and 4-phenylpyridine hydrochloride (right). Labels: 4PP: 4phenylpyridine; $\mathbf{4 P P H} \cdot \mathbf{x H 2 O}$: aqueous 4-phenylpyridine hydrochloride; 4PPH: anhydrous 4-phenylpyridine hydrochloride.
Fig. S4 IR patterns of $\mathbf{1}$ (left) and $\mathbf{2}$ (right). Labels: 1a and 2a: before irradiation, 2b-P: after irradiation.
Fig. S5 H-bonds around the trimesic acid and pyromellitic acid in compounds $\mathbf{1}$ (a) and 2 (b), respectively. All distances for H bonds are labelled in angstrom.
Fig. S6 (a) $\pi \cdots \pi$ stacking interactions in compound 1; (2) $\mathrm{p} \cdots \pi$ stacking interactions around benzene, pyridine rings and O atoms from pyromellitic acid in compound 2. All distances for H bonds are labelled in angstrom. Color scheme: carbon, grey- 50%; nitrogen, blue; oxygen, red; hydrogen, grey- 25%.
Fig. S7 UV-Vis absorption spectra of $\mathbf{3}$ in the photochromic process. Labels: 3a: before photo irradiation; $\mathbf{3 b - P}$: after exposure in a 300 W Xe lamp; decolored: heating in $120^{\circ} \mathrm{C}$ for $2 \mathrm{~h} ; \mathbf{3 b -} \mathbf{P}^{\prime}$: the decolored samples exposed to the same Xe lamp again.
Fig. S8 Photochromism of compound $\mathbf{3}$ at room temperature in N_{2}. The balloon is filled with nitrogen.
Fig. S9 UV-Vis absorption spectra of 3. Labels: 3a: before photo irradiation; 3b-P: Photochromism of compound $\mathbf{3}$ at room temperature in N_{2}.
Fig. S10 C 1s XPS (Al-K $)$ core-level spectra of compound $\mathbf{3}$ before and after photo irradiation in a vacuum. Labels: 3a, before irradiation; 3b-P, after photo irradiation; BE: Binding Energy.
Fig. S11 The core-level spectra of N 1s XPS (Al-K K) (a), O 1s XPS (Al-K $)$ (b), Mo 3d XPS (Al-K $)$ before photo irradiation (c), Mo 3d XPS (Al-K) after photo irradiation (d) for compound $\mathbf{3}$ in a vacuum. Labels: 3a before irradiation; 3b-P after photo irradiation; BE: Binding Energy.
Fig. S12 Electrostatic potential (ESP) surfaces of the neutral coordination molecule in $\mathbf{3}$ before irradiation. Significant surface local minima and maxima are represented as orange and cyan spheres, respectively.
Fig. S13 FT-IR spectra of 3. Labels: 3a, before irradiation; 3b-P, after photo irradiation; decolored, heating in $120^{\circ} \mathrm{C}$ for 2 h .
Fig. S14 PXRD patterns of 3. Labels: 3a: before irradiation; 3b-P: after photo irradiation; decolored: heating in $120^{\circ} \mathrm{C}$ for 2 h ; simulated: simulated patterns from single-crystal X-ray structure data. Fig. S15 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3}$ before and after photo irradiation in DMSO.

Fig. S16 PXRD patterns of $\mathbf{1}$ and 2. Labels: 1a, 2a: before irradiation; simulated: simulated patterns from single-crystal X-ray structure data.
Fig. S17 TGA curve of aqueous 4-phenylpyridine hydrochloride ($\mathbf{4} \mathbf{P P H C l} \cdot \mathbf{x H}_{\mathbf{2}} \mathbf{O}$) (a), compound $\mathbf{1}$ (b), $\mathbf{2}$ (c) and 3 (d) were investigated using powder samples under N_{2}.
Fig. S18 Molecular structures of compound 3. All distances for H bonds are labelled in angstrom.
Fig. S19 The infrared theoretical calculation of protonated 4-phenylpyridine (4PPH) before and after accept one electron using the Gaussian 09 package was carried out at the B3LYP/6-31+G(d,p) level.
Table S1 Crystal Data and Structure Refinements for 1, 2 and 3.
Table S2 Selected bond lengths (\AA) for $\mathbf{1 , 2} 2$ and 3.
Table S3 Selected angles (deg) for 1, 2 and $\mathbf{3}$.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR of 4-phenylpyridine hydrochloride (4PPHCl) in DMSO.

Fig. S2 ${ }^{1} \mathrm{H}$ NMR of 4-phenylpyridine (4PP) in DMSO.

Fig. S3 FT-IR spectra of 4-phenylpyridine (left) and 4-phenylpyridine hydrochloride (right). Labels: 4PP: 4phenylpyridine; 4PPH-xH2O: aqueous 4-phenylpyridine hydrochloride; 4PPH: anhydrous 4-phenylpyridine hydrochloride.

Fig. S4 IR patterns of $\mathbf{1}$ (left) and $\mathbf{2}$ (right). Labels: $\mathbf{1 a}$ and 2a: before irradiation, 2b-P: after irradiation.

Fig. S5 H-bonds around the trimesic acid and pyromellitic acid in compounds $\mathbf{1}$ (a) and 2 (b), respectively. All distances for H bonds are labelled in angstrom.

Fig. S6 (a) $\pi \cdots \pi$ stacking interactions in compound 1; (2) p $\cdots \pi$ stacking interactions around benzene, pyridine rings and O atoms from pyromellitic acid in compound $\mathbf{2}$. All distances for H bonds are labelled in angstrom. Color scheme: carbon, grey-50\%; nitrogen, blue; oxygen, red; hydrogen, grey- 25%.

Fig. S7 UV-Vis absorption spectra of $\mathbf{3}$ in the photochromic process. Labels: 3a: before photo irradiation; $\mathbf{3 b - P}$: after exposure in a 300 W Xe lamp; decolored: heating in $120^{\circ} \mathrm{C}$ for 2 h ; 3b-P': the decolored samples exposed to the same Xe lamp again.

Fig. S8 Photochromism of compound $\mathbf{3}$ at room temperature in N_{2}. The balloon is filled with nitrogen.

Fig. S9 UV-Vis absorption spectra of 3. Labels: 3a: before photo irradiation; 3b-P: Photochromism of compound $\mathbf{3}$ at room temperature in N_{2}.

Fig. S10 C 1s XPS (Al-K α) core-level spectra of compound $\mathbf{3}$ before and after photo irradiation in a vacuum. Labels: 3a, before irradiation; 3b-P, after photo irradiation; BE: Binding Energy.

Fig. S11 The core-level spectra of N 1s XPS (Al-K α) (a), O 1s XPS (Al-K $)$ (b), Mo 3d XPS (Al-K $)$ before photo irradiation (c), Mo 3d XPS (Al-K) after photo irradiation (d) for compound $\mathbf{3}$ in a vacuum. Labels: 3a before irradiation; 3b-P after photo irradiation; BE: Binding Energy.

Fig. S12 Electrostatic potential (ESP) surfaces of the neutral coordination molecule in $\mathbf{3}$ before irradiation. Significant surface local minima and maxima are represented as orange and cyan spheres, respectively.

Fig. S13 FT-IR spectra of 3. Labels: 3a, before irradiation; 3b-P, after photo irradiation; decolored, heating in $120^{\circ} \mathrm{C}$ for 2 h .

Fig. S14 PXRD patterns of 3. Labels: 3a: before irradiation; 3b-P: after photo irradiation; decolored: heating in $120^{\circ} \mathrm{C}$ for 2 h ; simulated: simulated patterns from single-crystal X-ray structure data.

Fig. S15 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3}$ before and after photo irradiation in DMSO.

Fig. S16 PXRD patterns of 1 and 2. Labels: 1a, 2a: before irradiation; simulated: simulated patterns from single-crystal X-ray structure data.

Fig. S17 TGA curve of aqueous 4-phenylpyridine hydrochloride ($\mathbf{4} \mathbf{P P H C l} \cdot \mathbf{x H} \mathbf{2} \mathbf{O}$) (a), compound $\mathbf{1}$ (b), $\mathbf{2}$ (c) and 3 (d) were investigated using powder samples under N_{2}.

Fig. S18 Molecular structures of compound 3. All distances for H bonds are labelled in angstrom.

Fig. S19 The infrared theoretical calculation of protonated 4- phenylpyridine (4PPH) before and after accept one electron using the Gaussian 09 package was carried out at the B3LYP/6-31+G(d,p) level.

3. Tables.

Table S1. Crystal Data and Structure Refinements for 1, 2 and 3.

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{6}$ (1)	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{8}$ (2)	$\mathrm{C}_{66} \mathrm{H}_{58} \mathrm{Mo}_{8} \mathrm{~N}_{6} \mathrm{O}_{26}$ (3)
Formula weight	365.33	409.34	2118.70
Temperature $/ \mathrm{K}$	273	294	293
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$P 2_{1} / \mathrm{n}$	P_{1}	$P-1$

a / \AA	10.5965(14)	6.7875(6)	11.4623(5)
b / \AA	12.9681(17)	7.4323(7)	13.4719(6)
c / \AA	13.0204(17)	9.6959(8)	13.5825(6)
$\alpha /$ deg	90	85.473(5)	114.442(2)
$\beta /$ deg	106.415(2)	69.797(4)	112.183(2)
γ / deg	90	84.779(5)	90.361(2)
Volume $/ \AA^{3}$	1716.3(4)	456.54(7)	1734.92(13)
Z	4	1	1
$D_{c} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.414	1.489	2.208
Absorption coefficient $/ \mathrm{mm}^{-1}$	0.106	0.116	1.485
Goodness-of-fit on F^{2}	1.073	1.024	1.073
$\begin{aligned} & \text { Final } R \text { indices }[I> \\ & 2 \sigma(I)] \end{aligned}$	$\begin{aligned} & \boldsymbol{R}_{\mathbf{1}}=0.0442, \quad \boldsymbol{w} \boldsymbol{R}_{\mathbf{2}}= \\ & 0.1209 \end{aligned}$	$\begin{aligned} & \boldsymbol{R}_{\mathbf{1}}=0.0435, \quad w \boldsymbol{R}_{2}= \\ & 0.1050 \end{aligned}$	$\begin{aligned} & \boldsymbol{R}_{\mathbf{1}}=0.0434, \quad \boldsymbol{w} \boldsymbol{R}_{2}= \\ & 0.1104 \end{aligned}$
R indices (all data)	$\begin{aligned} & \boldsymbol{R}_{\mathbf{1}}=0.0545, \quad w \boldsymbol{R}_{\mathbf{2}}= \\ & 0.1307 \end{aligned}$	$\begin{aligned} & \boldsymbol{R}_{\mathbf{1}}=0.0604, \quad w \boldsymbol{R}_{2}= \\ & 0.1162 \end{aligned}$	$\begin{aligned} & \boldsymbol{R}_{\mathbf{1}}=0.0792, \quad \boldsymbol{w} \boldsymbol{R}_{2}= \\ & 0.1453 \end{aligned}$

${ }^{a} R_{1}=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \sum\left|F_{\mathrm{o}}\right|,{ }^{\mathrm{b}} w R_{2}=\left\{\sum w\left[\left(F_{\mathrm{o}}\right)^{2}-\left(F_{\mathrm{c}}\right)^{2}\right]^{2} / \sum w\left[\left(F_{\mathrm{o}}\right)_{2}\right]^{2}\right\}^{1 / 2}$.
Table S2. Selected bond lengths (\AA) for 1, 2 and 3.

$\mathbf{1}$		$\mathbf{2}$		$\mathbf{3}$	
$\mathrm{O}(1)-\mathrm{C}(9)$	$1.2694(19)$	$\mathrm{O}(1)-\mathrm{C}(2)$	$1.244(3)$	$\mathrm{Mo}(1)-\mathrm{O}(7)$	$1.683(5)$
$\mathrm{O}(4)-\mathrm{C}(2)$	$1.3103(18)$	$\mathrm{O}(2)-\mathrm{C}(2)$	$1.270(3)$	$\mathrm{Mo}(2)-\mathrm{O}(6)$	$1.900(4)$
$\mathrm{N}(1)-\mathrm{C}(15)$	$1.326(2)$	$\mathrm{O}(3)-\mathrm{C}(11)$	$1.286(3)$	$\mathrm{Mo}(2)-\mathrm{O}(3)$	$2.341(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.491(2)$	$\mathrm{O}(8)-\mathrm{C}(11)$	$1.195(3)$	$\mathrm{Mo}(3)-\mathrm{O}(12)$	$1.707(5)$
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.384(2)$	$\mathrm{O}(4)-\mathrm{C}(6)$	$1.300(3)$	$\mathrm{Mo}(4)-\mathrm{O}(10)$	$1.694(5)$
$\mathrm{O}(3)-\mathrm{C}(2)$	$1.2104(18)$	$\mathrm{O}(7)-\mathrm{C}(6)$	$1.202(4)$	$\mathrm{N}(2)-\mathrm{C}(11)$	$1.335(10)$
$\mathrm{O}(6)-\mathrm{C}(7)$	$1.2205(18)$	$\mathrm{N}(1)-\mathrm{C}(19)$	$1.316(5)$	$\mathrm{N}(1)-\mathrm{C}(6)$	$1.319(10)$
$\mathrm{C}(12)-\mathrm{C}(16)$	$1.387(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.389(3)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$1.398(10)$

Table S3. Selected angles (deg) for 1, 2 and $\mathbf{3}$.

$\mathbf{1}$		$\mathbf{2}$		$\mathbf{3}$	
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{H}(2)$	109.5	$\mathrm{O}(8)-\mathrm{C}(11)-\mathrm{O}(3)$	$124.1(2)$	$\mathrm{O}(7)-\mathrm{Mo}(1)-\mathrm{O}(5)$	$103.7(2)$
$\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{O}(2)$	$124.39(13)$	$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{H}(3)$	109.5	$\mathrm{O}(9)-\mathrm{Mo}(2)-\mathrm{O}(6)$	$100.7(2)$
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(7)$	$121.14(12)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$121.6(2)$	$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{O}(3)$	$73.07(15)$
$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(4)$	$118.88(13)$	$\mathrm{O}(7)-\mathrm{C}(6)-\mathrm{C}(3)$	$123.2(3)$	$\mathrm{O}(13)-\mathrm{Mo}(3)-\mathrm{O}(3)$	$94.4(2)$

$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{C}(12)$	$121.20(15)$	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$123.1(2)$	$\mathrm{O}(10)-\mathrm{Mo}(4)-\mathrm{O}(4)$	$100.9(2)$
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{H}(10)$	119.6	$\mathrm{C}(3)-\mathrm{C}(12)-\mathrm{H}(12)$	118.4	$\mathrm{Mo}(4)-\mathrm{O}(4)-\mathrm{Mo}(3)$	$115.5(2)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(17)$	$120.5(2)$	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{H}(14)$	119.8	$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(7)$	$116.7(6)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{O}(4)$	$124.03(14)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	119.3	$\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{H}(9)$	119.2

