Supporting Information

Tetrakis(1,2,5-thiadiazolo)porphyrazines. 9. Synthesis, spectral and theoretical study of the lithium(I) complex and its unusual behaviour in aprotic solvents in the presence of acids

Pavel A. Stuzhin,*^a Svetlana S. Ivanova, ^a Mahmoud Hamdoush, ^a Gayane A. Kirakosyan, ^b Aleksej Kiselev,^a Anton Popov, ^a Valerij Sliznev^a and Claudio Ercolani^c

^a Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000 Ivanovo, Sheremetevskij Pr-t 7, Russia. E-mail:
stuzhin@isuct.ru
^{b.} Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia

^c Dipartimento di Chimica, Università di Roma "Sapienza", P.le A. Moro 5, I-00185 Roma, Italy.

Table S1. Geometric parameters atomic charges and Vyberg bond indices for two considered
geometrical configurations of dilitium complex [TTDPaLi ₂]2
Table S2. Geometric parameters atomic charges and Vyberg bond indices for four considered
geometrical configurations of monolitium complex [TTDPaHLi]
Table S3. Geometric parameters atomic charges and Vyberg bond indices for for lithate complex
[TTDPaLi] ⁻ and its <i>meso</i> -protonated form [TTDPaLi]
Table S4. Geometric parameters atomic charges and Vyberg bond indices for [TTDPaH ₂] and corresponding dianion [TTDPa] ²⁻
Table S5. Geometric parameters atomic charges and Vyberg bond indices for monoanions
$[TTDPaH]^{-}$ and $\{H[TTPA]\}^{-}$
Table S6. Cartesian coordinates of atoms and total energies for optimized molecular structures
containing TTDPa macrocycle
Table S7. Wavelength and oscillator strength corresponding to the energies of the electronic
transitions from the ground to the excited singlet states
Table S8. Calculated frequencies of normal vibrations for D_{4h} and C_{2h} geometric configurations
of [µ-TTDPa)Li ₂]19
Table S9 Calculated frequencies of normal vibrations infrared active vibrational modes for anion
$[TTDPzLi]^{-}$ and $[\mu-(TTDPaLi]_2$
Table S10. Calculated frequencies of normal vibrations infrared inactive vibrational modes for
anion [TTDPaLi] ⁻ and [µ-(TTDPa)Li] ₂
Table S11. Total energies (in Hartree) and frontier MO levels (in eV) for the optimized
structures of TTDPa macrocycle its Li complex and their anionic forms
Figure S1. MO level diagram for the optimized structures of [TTDPa] ² - and its mono- and
dilithium complexes
Figure S2. Cyclovoltammogramm of [TTDPaLi]-(Li ⁺) in DMSO in the presence of 0.1 M
tbaClO ₄ . Scan rate 100 mV/s

Table S1. Relative energy (h), geometric parameters (bond length R_e in Å, bond angles α_e) atomic charges (NBO, q) and Vyberg bond indices (Q) for two considered geometrical configurations of dilitium complex [TTDPaLi₂].

				47	S ₂
1 - Sa	~~~				
		- C		Lin	C_{p2} C_{t2} N_{t2}
	O O	C _p C _t N _t			C _{p1} C _{t1} N _{t1}
			Xar		
		∑s			
(A)) [TTDPaLi ₂] D	4h	(B)) [TTDPaLi ₂] C	2h
	(A)) Symmetry D _{4h} ((h =0.035 kJ/mo	bl)	
R _e (Li-N _p)	2.215	$\alpha_{e}(N_{p}C_{\alpha}C_{\beta})$	108.6	q(N _t)	-0.55
$R_e(N_p-C_\alpha)$	1.379	$\alpha_{e}(C_{\alpha}C_{\beta}C_{\beta})$	106.6	q(S)	0.87
$R_e(C_{\alpha}-C_{\beta})$	1.457	$\alpha_{e}(C_{\beta}C_{\beta}N_{t})$	115.2	$q(N_m)$	-0.43
$R_e(C_{\beta t}-C_{\beta})$	1.418	$\alpha_{\rm e}(C_{\beta}N_{\rm t}S)$	104.7	Q(Li-N _p)	0.04
$R_e(C_\beta - N_t)$	1.317	$\alpha_{e}(N_{t}SN_{t})$	100.2	$Q(N_p-C_\alpha)$	1.24
$R_e(N_t-S)$	1.654	$\alpha_{e}(N_{p}C_{\alpha}N_{m})$	127.9	$Q(C_{\alpha}-C_{\beta})$	1.06
$R_e(C_{\alpha}-N_m)$	1.317	$\alpha_{e}(C_{\alpha}N_{m}C_{\alpha})$	123.7	$Q(C_{\beta}-C_{\beta})$	1.18
$R_e(Li\cdots Li)$	2.016	q(Li)	0.91	$Q(C_{\beta}-N_t)$	1.52
$R_e(N_p \cdots N_p)$	3.944	$q(N_p)$	-0.71	$Q(N_t-S)$	1.20
$\alpha_{e}(LiN_{p}Li)$	54.1	$q(C_{\alpha})$	0.37	$Q(C_{\alpha}-N_m)$	1.39
$\alpha_{e}(C_{\alpha}N_{p}C_{\alpha})$	109.5	$q(C_{\beta})$	0.09	Q(Li-Li)	0.01
	(B) Symmetry C ₂	_{2h} (h =0 kJ/mol)		
$R_e(Li_1-N_{p1})$	2.140	$\alpha_{e}(C_{\alpha 2}N_{p2}C_{\alpha 2})$	109.4	$q(N_{t1})$	-0.55
$R_e(Li_2-N_{p1})$	2.296	$\alpha_{e}(N_{p1}C_{\alpha 1}C_{\beta 1})$	108.6	$q(N_{t2})$	-0.55
$R_e(Li_1-N_{p2})$	2.213	$\alpha_{e}(N_{p2}C_{\alpha 2}C_{\beta 2})$	108.6	$q(S_1)$	0.87
$R_e(N_{p1}-C_{\alpha 1})$	1.379	$\alpha_{e}(C_{\alpha 1}C_{\beta 1}C_{\beta 1})$	106.6	q(S ₂)	0.87
$R_e(N_{p2}-C_{\alpha 2})$	1.379	$\alpha_{e}(C_{\alpha 2}C_{\beta 2}C_{\beta 2})$	106.6	$q(N_m)$	-0.43
$R_e(C_{\alpha 1}-C_{\beta 1})$	1.457	$\alpha_{e}(C_{\beta 1}C_{\beta 1}N_{t1})$	115.2	$Q(Li_1-N_{p1})$	0.04
$R_e(C_{\alpha 2}-C_{\beta 2})$	1.457	$\alpha_{e}(C_{\beta 2}C_{\beta 2}N_{t2})$	115.2	$Q(Li_2-N_{p1})$	0.04
$R_e(C_{\beta 1}-C_{\beta 1})$	1.418	$\alpha_{e}(C_{\beta 1}N_{t1}S_{1})$	104.7	$Q(Li_1-N_{p2})$	0.04
$R_e(C_{\beta 2}-C_{\beta 2})$	1.418	$\alpha_{e}(C_{\beta 2}N_{t2}S_{2})$	104.7	$Q(N_{p1}-C_{\alpha 1})$	1.24
$R_e(C_{\beta 1}-N_{t1})$	1.317	$\alpha_{e}(N_{t1}S_{1}N_{t1})$	100.2	$Q(N_{p2}-C_{\alpha 2})$	1.24
$R_e(C_{\beta 2}-N_{t2})$	1.317	$\alpha_{e}(N_{t2}S_{2}N_{t2})$	100.2	$Q(C_{\alpha 1}-C_{\beta 1})$	1.06
$R_e(N_{t1}-S_1)$	1.654	$\alpha_{e}(N_{p1}C_{\alpha 1}N_{m})$	127.8	$Q(C_{\alpha 2}-C_{\beta 2})$	1.06
$R_e(N_{t2}-S_2)$	1.654	$\alpha_{e}(N_{p2}C_{\alpha 2}N_{m})$	127.9	$Q(C_{\beta 1}-C_{\beta 1})$	1.18
$R_e(C_{\alpha 1}-N_m)$	1.317	$\alpha_{e}(C_{\alpha 1}N_{m}C_{\alpha 1})$	123.8	$Q(C_{\beta 2}-C_{\beta 2})$	1.18
$R_e(C_{\alpha 2}-N_m)$	1.317	q(Li)	0.91	$Q(C_{\beta 1}-N_{t1})$	1.52
$R_e(Li\cdots Li)$	2.020	$q(N_{pl})$	-0.71	$Q(C_{\beta 2}-N_{t2})$	1.52
$\frac{R_{e}(N_{p1}\cdots N_{p1})}{R_{e}(N_{p1}\cdots N_{p1})}$	3.953	$q(N_{p2})$	-0.71	$Q(N_{t1}-S_1)$	1.20
$R_{e}(N_{p2}\cdots N_{p2})$	3.939	$q(C_{\alpha 1})$	0.37	$Q(N_{t2}-S_2)$	1.20
$\alpha_{e}(LiN_{p1}Li)$	54.0	$q(C_{\alpha 2})$	0.37	$Q(C_{\alpha 1}-N_m)$	1.39
$\alpha_{e}(LiN_{p2}Li)$	54.3	$q(C_{\beta 1})$	0.09	$Q(C_{\alpha 2}-N_m)$	1.39
$ \alpha_{e}(C_{\alpha 1}N_{p1}C_{\alpha 1}) \rangle$	109.5	$q(C_{\beta 2})$	0.09	Q(Li-Li)	0.01

Table S2. Relative energy (h), geometric parameters (bond length R_e in Å, bond angles α_e) for
four considered geometrical configurations of monolitium complex [TTDPaHLi]. Atomic
charges (NBO α) and Vyberg bond indices (O) are given for the most stable C _a structure

	52					
		(A) Symmetry C	C _{4v} (h =360 kJ	/mol)		
R _e (Li-N _p)	2.191	$R_e(C_{\alpha}-N_m)$	1.311	$\alpha_{e}(C_{\beta}C_{\beta}N_{t})$	115.3	
$R_e(N_p-C_\alpha)$	1.382	R _e (Li-H)	1.648	$\alpha_{e}(C_{\beta}N_{t}S)$	104.6	
$R_e(C_{\alpha}-C_{\beta})$	1.455	$\alpha_{e}(N_{p}LiN_{p})$	126.0	$\alpha_{e}(N_{t}SN_{t})$	100.3	
$R_e(C_\beta - C_\beta)$	1.413	$\alpha_{e}(C_{\alpha}N_{p}C_{\alpha})$	108.6	$\alpha_{\rm e}(N_{\rm p}C_{\alpha}N_{\rm m})$	128.0	
$R_e(C_\beta - N_t)$	1.318	$\alpha_{e}(N_{p}C_{\alpha}C_{\beta})$	109.0	$\alpha_{e}(C_{\alpha}N_{m}C_{\alpha})$	123.0	
$R_e(N_t-S)$	1.654	$\alpha_{e}(C_{\alpha}C_{\beta}C_{\beta})$	106.6	$\chi_{e}(LiN_{p}N_{p}N_{m})$	147.8	
(B) Symmetry C_{2v} (h =330 kJ/mol)						
R _e (Li-N _{p1})	2.089	$R_e(C_{\alpha 1}-N_m)$	1.315	$\alpha_{e}(C_{\beta 2}N_{t2}S_{2})$	105.0	
$R_{e}(Li-N_{p2})$	2.203	$R_e(C_{\alpha 2}-N_m)$	1.316	$\alpha_{e}(N_{t1}S_{1}N_{t1})$	100.6	
R _e (Li-H)	1.657	$\alpha_{e}(N_{p1}LiN_{p1})$	94.8	$\alpha_{e}(N_{t2}S_{2}N_{t2})$	99.9	
$R_e(N_{p1}-C_{\alpha 1})$	1.428	$\alpha_{e}(N_{p2}LiN_{p2})$	144.8	$\alpha_{e}(N_{p1}C_{\alpha 1}N_{m})$	132.2	
$R_e(N_{p2}-C_{\alpha 2})$	1.350	$\alpha_{e}(C_{\alpha 1}N_{p1}C_{\alpha 1})$	106.2	$\alpha_{e}(N_{p2}C_{\alpha 2}N_{m})$	121.9	
$R_e(C_{\alpha 1}-C_{\beta 1})$	1.445	$\alpha_{e}(C_{\alpha 2}N_{p2}C_{\alpha 2})$	109.6	$\alpha_{e}(C_{\alpha 1}N_{m}C_{\alpha 2})$	121.8	
$R_e(C_{\alpha 2}-C_{\beta 2})$	1.463	$\alpha_{e}(N_{p1}C_{\alpha 1}C_{\beta 1})$	108.5	$\chi_{e}(C_{\alpha 1}\cdots C_{\alpha 1})$	169.3	
$R_e(C_{\beta 1}-C_{\beta 1})$	1.404	$\alpha_{e}(N_{p2}C_{\alpha 2}C_{\beta 2})$	108.9	$\chi_{e}(C_{\alpha 2}\cdots C_{\alpha 2})$	166.7	
$R_e(C_{\beta 2}-C_{\beta 2})$	1.429	$\alpha_{e}(C_{\alpha 1}C_{\beta 1}C_{\beta 1})$	107.7	$\chi_{e}(C_{\alpha 1}C_{\beta 1}C_{\beta 1}N_{t1})$	177.0	
$R_e(C_{\beta 1}-N_{t1})$	1.322	$\alpha_{e}(C_{\alpha 2}C_{\beta 2}C_{\beta 2})$	105.4	$\chi_{e}(C_{\alpha 2}C_{\beta 2}C_{\beta 2}N_{t2})$	177.0	
$R_e(C_{\beta 2}-N_{t2})$	1.312	$\alpha_{e}(C_{\beta 1}C_{\beta 1}N_{t1})$	115.3	$\chi_{e}(C_{\beta 1}C_{\alpha 1}N_{m}C_{\alpha 2})$	178.9	
$R_e(N_{t1}-S_1)$	1.648	$\alpha_{e}(C_{\beta 2}C_{\beta 2}N_{t2})$	115.0	$\chi_{e}(C_{\beta 2}C_{\alpha 2}N_{m}C_{\alpha 1})$	165.0	
$R_{e}(N_{t2}-S_{2})$	1.659	$\alpha_{e}(C_{\beta 1}N_{t1}S_{1})$	104.4			
	Γ	(C) Symmetry	C_{2v} (h = 32 kJ/	mol)		
$R_e(Li-N_{p1})$	1.757	$R_{e}(N_{t2}-S_{2})$	1.656	$\alpha_{e}(C_{\beta 1}C_{\beta 1}N_{t1})$	114.9	
$R_{e}(Li-N_{p2})$	1.963	$R_e(N_{t3}-S_3)$	1.647	$\alpha_{e}(C_{\beta 2}C_{\beta 2}N_{t2})$	115.3	

					4
R _e (Li-H)	1.636	$R_e(C_{\alpha 1}-N_m)$	1.320	$\alpha_{e}(C_{\beta 3}C_{\beta 3}N_{t3})$	114.5
$R_e(N_{p1}-C_{\alpha 1})$	1.350	$R_e(C_{\alpha 2}-N_m)$	1.328	$\alpha_{e}(C_{\beta 1}N_{t1}S_{1})$	105.2
$R_e(N_{p2}-C_{\alpha 2})$	1.386	$R_e(C_{\alpha 2}-N_{m1})$	1.327	$\alpha_{e}(C_{\beta 2}N_{t2}S_{2})$	104.8
$R_e(N_{p3}-C_{\alpha 3})$	1.375	$R_e(C_{\alpha 3}-N_{m1})$	1.309	$\alpha_{e}(C_{\beta 3}N_{t3}S_{3})$	105.2
$R_{e}(C_{\alpha 1}-C_{\beta 1})$	1.471	$R_e(N_{p3}-H)$	0.984	$\alpha_{e}(N_{t1}S_{1}N_{t1})$	99.8
$R_{e}(C_{\alpha 2}-C_{\beta 2})$	1.463	$\alpha_{e}(C_{\alpha 1}N_{n1}C_{\alpha 1})$	113.9	$\alpha_{e}(N_{t2}S_{2}N_{t2})$	100.0
$R_e(C_{\alpha 3}-C_{\beta 3})$	1.453	$\alpha_{\rm e}(C_{\alpha 2}N_{\rm p2}C_{\alpha 2})$	110.1	$\alpha_{e}(N_{t3}S_{3}N_{t3})$	100.5
$R_e(C_{\beta 1}-C_{\beta 1})$	1.433	$\alpha_{\rm e}(C_{\alpha 3}N_{\rm p3}C_{\alpha 3})$	117.9	$\alpha_{\rm e}(N_{\rm p1}C_{\alpha 1}N_{\rm m})$	125.4
$R_e(C_{\beta 2}-C_{\beta 2})$	1.417	$\alpha_{e}(N_{p1}C_{\alpha 1}C_{\beta 1})$	106.7	$\alpha_{\rm e}(N_{\rm p2}C_{\alpha 2}N_{\rm m})$	131.0
$R_e(C_{\beta 3}-C_{\beta 3})$	1.440	$\alpha_{e}(N_{p2}C_{\alpha 2}C_{\beta 2})$	107.7	$\alpha_{e}(N_{p2}C_{\alpha 2}N_{m1})$	129.8
$R_e(C_{\beta 1}-N_{t1})$	1.311	$\alpha_{e}(N_{p3}C_{\alpha 3}C_{\beta 3})$	102.7	$\alpha_{e}(N_{p3}C_{\alpha 3}N_{m1})$	126.5
$R_e(C_{\beta 2}-N_{t2})$	1.315	$\alpha_{e}(C_{\alpha 1}C_{\beta 1}C_{\beta 1})$	106.3	$\alpha_{\rm e}(C_{\alpha 1}N_{\rm m}C_{\alpha 2})$	126.3
$R_e(C_{\beta 3}-N_{t3})$	1.318	$\alpha_{e}(C_{\alpha 2}C_{\beta 2}C_{\beta 2})$	107.1	$\alpha_{e}(C_{\alpha 2}N_{m1}C_{\alpha 3})$	127.0
$R_e(N_{t1}-S_1)$	1.659	$\alpha_{e}(C_{\alpha 3}C_{\beta 3}C_{\beta 3})$	108.4		
		(D) Symmetry	C_s (h =0 kJ/m	ol)	
$R_e(Li-N_{p1})$	1.874	$R_e(C_{\alpha 2}-N_{m1})$	1.323	$\alpha_{e}(C_{\beta 1}N_{t1}S_{1})$	104.9
R _e (Li-N _{p2})	2.035	$R_e(C_{\alpha 2}-N_{m2})$	1.324	$\alpha_{e}(C_{\beta 2}N_{t2}S_{2})$	104.8/104.7
R _e (Li-H)	1.976	$R_e(C_{\alpha 3}-N_{m2})$	1.306	$\alpha_{e}(C_{\beta 3}N_{t3}S_{3})$	105.0
$R_e(N_{p1}-C_{\alpha 1})$	1.359	$R_e(N_{p3}-H)$	1.009	$\alpha_{e}(N_{t1}S_{1}N_{t1})$	99.8
$R_e(N_{p2}-C_{\alpha 2})$	1.376/1.375	$\alpha_{e}(\text{LiN}_{p1}C_{\alpha 1})$	124.2	$\alpha_{e}(N_{t2}S_{2}N_{t2})$	100.0
$R_e(N_{p3}-C_{\alpha 3})$	1.397	$\alpha_{e}(N_{p2}LiN_{p2})$	149.2	$\alpha_{e}(N_{t3}S_{3}N_{t3})$	100.8
$R_e(C_{\alpha 1}-C_{\beta 1})$	1.468	$\alpha_{e}(N_{p3}HLi)$	103.8	$\alpha_{e}(N_{p1}C_{\alpha 1}N_{m1})$	126.9
$R_e(C_{\alpha 2}-C_{\beta 2})$	1.463/1.459	$\alpha_{e}(C_{\alpha 1}N_{p1}C_{\alpha 1})$	111.6	$\alpha_{e}(N_{p2}C_{\alpha 2}N_{m1})$	129.8
$R_e(C_{\alpha 3}-C_{\beta 3})$	1.443	$\alpha_{e}(C_{\alpha 2}N_{p2}C_{\alpha 2})$	109.8	$\alpha_{e}(N_{p2}C_{\alpha 2}N_{m2})$	127.9
$R_e(C_{\beta 1}-C_{\beta 1})$	1.424	$\alpha_{e}(C_{\alpha 3}N_{p3}C_{\alpha 3})$	114.5	$\alpha_{e}(N_{p3}C_{\alpha 3}N_{m2})$	127.7
$R_e(C_{\beta 2}-C_{\beta 2})$	1.417	$\alpha_{e}(N_{p1}C_{\alpha 1}C_{\beta 1})$	107.9	$\alpha_{e}(C_{\alpha 1}N_{m1}C_{\alpha 2})$	125.2
$R_e(C_{\beta 3}-C_{\beta 3})$	1.431	$\alpha_{e}(N_{p2}C_{\alpha 2}C_{\beta 2})$	108.2/108.8	$\alpha_{e}(C_{\alpha 2}N_{m2}C_{\alpha 3})$	125.4
$R_e(C_{\beta 1}-N_{t1})$	1.312	$\alpha_{e}(N_{p3}C_{\alpha 3}C_{\beta 3})$	104.1	$\alpha_{e}(HN_{p3}C_{\alpha 3})$	120.3
$R_e(C_{\beta 2}-N_{t2})$	1.314/1.315	$\alpha_{e}(C_{\alpha 1}C_{\beta 1}C_{\beta 1})$	106.3	$\chi_{e}(C_{\alpha 1}\cdots C_{\alpha 1})$	176.7
$R_e(C_{\beta 3}-N_{t3})$	1.322	$\alpha_{e}(C_{\alpha 2}C_{\beta 2}C_{\beta 2})$	106.8/106.3	$\chi_{e}(C_{\beta 1}C_{\alpha 1}N_{m1}C_{\alpha 2})$	173.4
$R_e(N_{t1}-S_1)$	1.659	$\alpha_{e}(C_{\alpha 3}C_{\beta 3}C_{\beta 3})$	108.6	$\chi_{e}(C_{\beta 2}C_{\alpha 2}N_{m1}C_{\alpha 1})$	176.7
$R_e(N_{t2}-S_2)$	1.656/1.657	$\alpha_{e}(C_{\beta 1}C_{\beta 1}N_{t1})$	115.1	$\chi_{e}(C_{\beta 2}C_{\alpha 2}N_{m 2}C_{\alpha 3})$	177.3
$R_e(N_{t3}-S_3)$	1.643	$\alpha_{e}(C_{\beta 2}C_{\beta 2}N_{t2})$	115.2/115.3	$\chi_{e}(C_{\beta 3}C_{\alpha 3}N_{m 2}C_{\alpha 2})$	165.6
$R_e(C_{\alpha 1}-N_{m1})$	1.318	$\alpha_{e}(C_{\beta 3}C_{\beta 3}N_{t3})$	114.6		
q(Li)	0.87	$q(N_{t3})$	-0.55	$Q(C_{\beta 1}-C_{\beta 1})$	1.17
<u>q(H)</u>	0.42	$q(S_1)$	0.85	$Q(C_{\beta 2}-C_{\beta 2})$	1.18
$q(N_{p1})$	-0.63	$q(S_2)$	0.86	$Q(C_{\beta 3}-C_{\beta 3})$	1.16
$q(N_{p2})$	-0.64	$q(S_3)$	0.92	$\frac{Q(C_{\beta 1}-N_{t1})}{Q(C_{\beta 1}-N_{t1})}$	1.55
$q(N_{p3})$	-0.60	$Q(L_1-N_{p1})$	0.06	$Q(C_{\beta 2}-N_{t2})$	1.53/1.53
$q(C_{\alpha 1})$	0.39	$Q(L1-N_{p2})$	0.07	$\frac{Q(C_{\beta 3}-N_{t3})}{Q(N_{L}-S_{L})}$	1.48
$q(C_{\alpha 2})$	0.39/0.37	$Q(LI-\Pi)$	0.004	$Q(N_{t1}-S_1)$	1.19
$q(C_{\alpha 3})$	0.09	$\frac{Q(N_{pl}-C_{\alpha l})}{Q(N_{a}-C_{\alpha})}$	1.27	$\frac{Q(N_{t2}-S_2)}{Q(N_{t2}-S_2)}$	1.20/1.19
$q(C_{\beta 1})$	0.09/0.08	$O(N_{r2}-C_{r2})$	1 10	$O(C_{a1}-N_{a1})$	1 39
$q(C_{p2})$	0.09	$O(C_{\alpha^1} - C_{\alpha^1})$	1.04	$O(C_{\alpha^2}-N_{m1})$	1.38
$q(N_{t1})$	-0.54	$O(C_{\alpha 2}-C_{\beta 2})$	1.04/1.05	$O(C_{\alpha^2}-N_{m^2})$	1.37
$q(N_{t2})$	-0.54/-0.55	$Q(C_{\alpha3}-C_{\beta3})$	1.10	$Q(C_{\alpha 3}-N_{m2})$	1.44
$q(N_{t3})$	-0.55			Q(N _{p3} -H)	0.78

Table S3. Geometric parameters (bond length R_e in Å, bond angles α_e) atomic charges (NBO, q) and Vyberg bond indices (Q) for lithate complex [TTDPaLi]⁻ and its *meso*-protonated form H[TTDPaLi]

[TTDPaLi]⁻, D_{4h}

H[TTDPaLi], C_{2v}

		[TTDPaLi]	D _{4h}		
R _e (Li-N _p)	2.011	$\alpha_{e}(C_{\alpha}C_{\beta}C_{\beta})$	106.3	$q(N_t)$	-0.56
$R_e(N_p-C_\alpha)$	1.363	$\alpha_{e}(C_{\beta}C_{\beta}N_{t})$	115.2	q(S)	0.78
$R_e(C_{\alpha}-C_{\beta})$	1.466	$\alpha_{\rm e}(C_{\beta}N_{\rm t}S)$	104.9	$q(N_m)$	-0.45
$R_e(C_\beta - C_\beta)$	1.428	$\alpha_{e}(N_{t}SN_{t})$	99.8	Q(Li-N _p)	0.06
$R_e(C_\beta - N_t)$	1.313	$\alpha_{e}(N_{p}C_{\alpha}N_{m})$	128.4	$Q(N_p-C_\alpha)$	1.28
$R_e(N_t-S)$	1.664	$\alpha_{e}(C_{\alpha}N_{m}C_{\alpha})$	124.5	$Q(C_{\alpha}-C_{\beta})$	1.04
$R_e(C_{\alpha}-N_m)$	1.323	q(Li)	0.85	$Q(C_{\beta}-C_{\beta})$	1.16
$R_e(N_p \cdots N_p)$	4.022	$q(N_p)$	-0.57	$Q(C_{\beta}-N_t)$	1.55
$\alpha_{e}(C_{\alpha}N_{p}C_{\alpha})$	111.3	$q(C_{\alpha})$	0.35	$Q(N_t-S)$	1.16
$\alpha_{e}(N_{p}C_{\alpha}C_{\beta})$	108.1	$q(C_{\beta})$	0.10	$Q(C_{\alpha}-N_m)$	1.38

	<i>meso-</i> Pr	otonated form H	[TTDPaLi] (syı	mmetry C _{2v})			
	(h = -67.4 kJ/mol as compared to [TTDPaHLi])						
$R_e(Li-N_{p1})$	2.032	$R_e(N_{t2}-S_2)$	1.660/1.660	$\alpha_{e}(C_{\beta 1}C_{\beta 1}N_{t1})$	114.1/116.0		
$R_e(Li-N_{p2})$	1.994	$R_e(C_{\alpha 1}-N_{m1})$	1.354	$\alpha_{e}(C_{\beta 2}C_{\beta 2}N_{t2})$	115.2/115.3		
$R_e(N_{m1}-H)$	1.013	$R_e(C_{\alpha 1}-N_{m2})$	1.315	$\alpha_{e}(C_{\beta 1}N_{t1}S_{1})$	105.6/104.4		
$R_e(N_{p1}-C_{\alpha 1})$	1.377/1.336	$R_e(C_{\alpha 2}-N_{m2})$	1.323	$\alpha_{e}(C_{\beta 2}N_{t2}S_{2})$	104.9/104.8		
$R_e(N_{p2}-C_{\alpha 2})$	1.363/1.363	$R_e(N_{p1}\cdots N_{p2})$	4.026	$\alpha_{e}(N_{t1}S_{1}N_{t1})$	99.8		
$R_e(C_{\alpha 1}-C_{\beta 1})$	1.466/1.447	$\alpha_{e}(N_{p1}LiN_{p2})$	89.6	$\alpha_{e}(N_{t2}S_{2}N_{t2})$	99.8		
$R_e(C_{\alpha 2}-C_{\beta 2})$	1.469/1.467	$\alpha_{e}(C_{\alpha 1}N_{p1}C_{\alpha 1})$	109.8	$\alpha_{e}(N_{p1}C_{\alpha 1}N_{m1})$	124.5		
$R_e(C_{\beta 1}-C_{\beta 1})$	1.424	$\alpha_{e}(C_{\alpha 2}N_{p2}C_{\alpha 2})$	110.7	$\alpha_{e}(N_{p1}C_{\alpha 1}N_{m2})$	127.9		
$R_e(C_{\beta 2}-C_{\beta 2})$	1.421	$\alpha_{e}(N_{p1}C_{\alpha 1}C_{\beta 1})$	107.7/110.7	$\alpha_{e}(N_{p2}C_{\alpha 2}N_{m2})$	127.9		
$R_e(C_{\beta 1}-N_{t1})$	1.314/1.314	$\alpha_{e}(N_{p2}C_{\alpha 2}C_{\beta 2})$	108.3/108.5	$\alpha_{e}(C_{\alpha 1}N_{m1}C_{\alpha 1})$	129.1		
$R_e(C_{\beta 2}-N_{t2})$	1.312/1.312	$\alpha_{e}(C_{\alpha 1}C_{\beta 1}C_{\beta 1})$	106.5/105.2	$\alpha_{e}(C_{\alpha 1}N_{m2}C_{\alpha 2})$	125.0		
$R_e(N_{t1}-S_1)$	1.655/1.662	$\alpha_{e}(C_{\alpha 2}C_{\beta 2}C_{\beta 2})$	106.3/106.2				
q(Li)	0.86	$q(S_1)$	0.86	$Q(C_{\alpha 2}-C_{\beta 2})$	1.29/1.29		
q(H)	0.43	$q(S_2)$	0.84	$Q(C_{\beta 1}-C_{\beta 1})$	1.16		
$q(N_{p1})$	-0.55	$q(N_{m1})$	-0.45	$Q(C_{\beta 2}-C_{\beta 2})$	1.17		
$q(N_{p2})$	-0.58	$q(N_{m2})$	-0.42	$Q(C_{\beta 1}-N_{t1})$	1.54/1.52		
$q(C_{\alpha 1})$	0.37/0.36	$Q(Li-N_{p1})$	0.06	$Q(C_{\beta 2}-N_{t2})$	1.55/1.55		
$q(C_{\alpha 2})$	0.39/0.38	$Q(Li-N_{p2})$	0.06	$Q(N_{t1}-S_1)$	1.20/1.17		
$q(C_{\beta 1})$	0.10/0.07	$Q(N_{m1}-H)$	0.78	$Q(N_{t2}-S_2)$	1.18/1.18		
$q(C_{\beta 2})$	0.09/0.09	$\overline{Q(N_{p1}-C_{\alpha 1})}$	1.23/1.37	$\overline{Q(C_{\alpha 1}-N_{m1})}$	1.19		
$q(N_{t1})$	-0.54/-0.58	$Q(N_{p2}-C_{\alpha 2})$	1.29/1.29	$Q(C_{\alpha 1}-N_{m2})$	1.41		
$q(N_{t2})$	-0.54/-0.54	$Q(C_{\alpha 1}-C_{\beta 1})$	1.05/1.07	$Q(C_{\alpha 2}-N_{m2})$	1.37		

		[TTDPaH ₂]	D _{2h}		
$R_{e}(H-N_{p1})$	1.011	$\alpha_{e}(C_{\alpha 1}C_{\beta 1}C_{\beta 1})$	108.1	$q(N_{t1})$	-0.54
$R_e(N_{p1}-C_{\alpha 1})$	1.382	$\alpha_{e}(C_{\alpha 2}C_{\beta 2}C_{\beta 2})$	106.1	$q(N_{t2})$	-0.54
$R_e(N_{p2}-C_{\alpha 2})$	1.365	$\alpha_{e}(C_{\beta 1}C_{\beta 1}N_{t1})$	114.9	$q(S_1)$	0.90
$R_e(C_{\alpha 1}-C_{\beta 1})$	1.452	$\alpha_{e}(C_{\beta 2}C_{\beta 2}N_{t2})$	115.3	$q(S_2)$	0.85
$R_e(C_{\alpha 2}-C_{\beta 2})$	1.464	$\alpha_{e}(C_{\beta 1}N_{t1}S_{1})$	104.9	$q(N_m)$	-0.42
$R_e(C_{\beta 1}-C_{\beta 1})$	1.425	$\alpha_{e}(C_{\beta 2}N_{t2}S_{2})$	104.8	Q(H-N _{p1})	0.73
$R_e(C_{\beta 2}-C_{\beta 2})$	1.417	$\alpha_{e}(N_{t1}S_{1}N_{t1})$	100.4	$Q(N_{p1}-C_{\alpha 1})$	1.15
$R_e(C_{\beta 1}-N_{t1})$	1.318	$\alpha_{e}(N_{t2}S_{2}N_{t2})$	99.8	$Q(N_{p2}-C_{\alpha 2})$	1.30
$R_e(C_{\beta 2}-N_{t2})$	1.313	$\alpha_{e}(N_{p1}C_{\alpha 1}N_{m})$	128.7	$Q(C_{\alpha 1}-C_{\beta 1})$	1.08
$R_e(N_{t1}-S_1)$	1.649	$\alpha_{\rm e}(N_{\rm p2}C_{\alpha 2}N_{\rm m})$	128.1	$Q(C_{\alpha 2}-C_{\beta 2})$	1.04
$R_e(N_{t2}-S_2)$	1.659	$\alpha_{e}(C_{\alpha 1}N_{m}C_{\alpha 2})$	125.3	$Q(C_{\beta 1}-C_{\beta 1})$	1.17
$R_e(C_{\alpha 1}-N_m)$	1.305	q(H)	0.46	$Q(C_{\beta 2}-C_{\beta 2})$	1.17
$R_e(C_{\alpha 2}-N_m)$	1.325	$q(N_{p1})$	-0.51	$Q(C_{\beta 1}-N_{t1})$	1.51
$R_e(N_{p1}\cdots N_{p1})$	4.115	$q(N_{p2})$	-0.57	$Q(C_{\beta 2}-N_{t2})$	1.54
$R_e(N_{p2}\cdots N_{p2})$	3.984	$q(C_{\alpha 1})$	0.39	$Q(N_{t1}-S_1)$	1.21
$\alpha_{e}(C_{\alpha 1}N_{p1}C_{\alpha 1})$	114.8	$q(C_{\alpha 2})$	0.38	$Q(N_{t2}-S_2)$	1.19
$\alpha_{e}(C_{\alpha 2}N_{p2}C_{\alpha 2})$	109.5	$q(C_{\beta 1})$	0.09	$Q(C_{\alpha 1}-N_m)$	1.44
$\alpha_{e}(N_{p1}C_{\alpha 1}C_{\beta 1})$	104.5	$q(C_{\beta 2})$	0.09	$Q(C_{\alpha 2}-N_m)$	1.35
$\alpha_{e}(N_{p2}C_{\alpha 2}C_{\beta 2})$	109.1				
		[TTDPa] ²⁻	D _{4h}		
$R_e(N_p-C_\alpha)$	1.352	$\alpha_{e}(C_{\alpha}C_{\beta}C_{\beta})$	105.7	$q(N_t)$	-0.58
$R_e(C_{\alpha}-C_{\beta})$	1.475	$\alpha_{e}(C_{\beta}C_{\beta}N_{t})$	115.2	q(S)	0.68
$R_e(C_\beta-C_\beta)$	1.438	$\alpha_{\rm e}(C_{\beta}N_{\rm t}S)$	105.1	q(N _m)	-0.47
$R_e(C_\beta - N_t)$	1.311	$\alpha_{e}(N_{t}SN_{t})$	99.4	$Q(N_p-C_\alpha)$	1.33
$R_e(N_t-S)$	1.676	$\alpha_{e}(N_{p}C_{\alpha}N_{m})$	128.9	$Q(C_{\alpha}-C_{\beta})$	1.03
$R_e(C_{\alpha}-N_m)$	1.329	$\alpha_{e}(C_{\alpha}N_{m}C_{\alpha})$	124.1	$Q(C_{\beta}-C_{\beta})$	1.13
$R_{e}(N_{p}\cdots N_{p})$	4.042	$q(N_p)$	-0.41	$Q(C_{\beta}-N_t)$	1.57
$\alpha_{e}(C_{\alpha}N_{p}C_{\alpha})$	111.8	$q(C_{\alpha})$	0.33	$\overline{Q(N_t-S)}$	1.13
$\overline{\alpha_{e}(N_{p}C_{\alpha}C_{\beta})}$	108.4	$q(C_{\beta})$	0.11	$\overline{Q(C_{\alpha}-N_m)}$	1.36

Table S5. Geometric parameters (bond length R_e in Å, bond angles α_e) atomic charges (NBO, q) and Vyberg bond indices (Q) for monoanions [TTDPaH]⁻ (protonated N_p) and {H[TTPA]}⁻ (protonated N_m)

 $\begin{array}{l} \left[TTDPaH\right]^{-} (symmetry \ C_{2v}) \\ protonation \ of \ N_{p} \end{array}$

 ${H[TTDPa]}^{-}$ (symmetry C_{2v}) protonation of N_m

		Protonation	of N _p : h=0		
$R_e(N_{p1}-H)$	1.023	$R_e(C_{\alpha 3}-N_{m2})$	1.323	$\alpha_{e}(N_{p2}C_{\alpha 2}C_{\beta 2})$	109.3
$R_e(N_{p1}-C_{\alpha 1})$	1.390	$R_e(C_{\alpha 4}-N_{m2})$	1.324	$\alpha_{e}(N_{p2}C_{\alpha 3}C_{\beta 3})$	108.3
$R_e(C_{\alpha 1}-C_{\beta 1})$	1.448	$R_e(N_{p3}-C_{\alpha 4})$	1.352	$\alpha_{e}(C_{\alpha 2}C_{\beta 2}C_{\beta 3})$	105.5
$R_e(C_{\beta 1}-C_{\beta 1})$	1.428	$R_e(C_{\alpha 4}-C_{\beta 4})$	1.476	$\alpha_{e}(C_{\beta 3}C_{\beta 2}N_{t2})$	115.4
$R_e(C_{\beta 1}-N_{t1})$	1.320	$R_e(C_{\beta4}-C_{\beta4})$	1.427	$\alpha_{e}(C_{\beta 2}C_{\beta 3}N_{t3})$	115.2
$R_e(N_{t1}-S_1)$	1.652	$R_e(C_{\beta4}-N_{t4})$	1.310	$\alpha_{\rm e}(C_{\beta 2}N_{t2}S_2)$	104.8
$R_e(C_{\alpha 1}-N_{m1})$	1.311	$R_e(N_{t4}-S_3)$	1.669	$\alpha_{e}(N_{t2}S_{2}N_{t3})$	99.6
$R_{e}(C_{\alpha 2}-N_{m1})$	1.326	$\alpha_{e}(C_{\alpha 1}N_{n1}C_{\alpha 1})$	114.2	$\alpha_{e}(N_{n2}C_{a3}N_{m2})$	129.4
$R_e(N_{p2}-C_{\alpha 2})$	1.352	$\alpha_{e}(N_{p1}C_{\alpha 1}C_{\beta 1})$	104.7	$\alpha_{e}(C_{\alpha 3}N_{m2}C_{\alpha 4})$	124.4
$R_e(N_{p2}-C_{\alpha 3})$	1.359	$\alpha_{\rm e}(C_{\alpha 1}C_{\beta 1}C_{\beta 1})$	108.2	$\alpha_{e}(N_{p3}C_{q4}N_{m2})$	128.2
$R_e(C_{\alpha 2}-C_{\beta 2})$	1.466	$\alpha_{e}(C_{\beta 1}C_{\beta 1}N_{t1})$	114.9	$\alpha_{e}(C_{\alpha4}N_{p3}C_{\alpha4})$	110.8
$R_e(C_{\alpha 3}-C_{\beta 3})$	1.474	$\alpha_{e}(C_{\beta 1}N_{t1}S_{1})$	104.8	$\alpha_{e}(N_{p3}C_{\alpha4}C_{\beta4})$	108.9
$R_e(C_{\beta 2}-C_{\beta 3})$	1.427	$\alpha_{e}(N_{t1}S_{1}N_{t1})$	100.5	$\alpha_{e}(C_{\alpha4}C_{\beta4}C_{\beta4})$	105.7
$R_e(C_{\beta 2}-N_{t2})$	1.312	$\alpha_{e}(N_{p1}C_{\alpha 1}N_{m1})$	130.4	$\alpha_{e}(C_{\beta4}C_{\beta4}N_{t4})$	115.3
$R_e(C_{\beta 3}-N_{t3})$	1.311	$\alpha_{e}(C_{\alpha 1}N_{m1}C_{\alpha 2})$	124.1	$\alpha_{e}(C_{\beta4}N_{t4}S_{3})$	104.9
$R_e(N_{t2}-S_2)$	1.667	$\alpha_{e}(N_{p2}C_{\alpha 2}N_{m1})$	126.5	$\alpha_{e}(N_{t4}S_{3}N_{t4})$	99.5
$R_e(N_{t3}-S_2)$	1.666	$\alpha_{\rm e}(C_{\alpha 2}N_{\rm p2}C_{\alpha 3})$	110.7		
		Protonation of N _n	: h=104.7 kJ/n	nol	
$R_e(N_{m1}-H)$	1.010	$R_e(C_{\alpha 4}-C_{\beta 4})$	1.478	$\alpha_{e}(N_{p1}C_{\alpha 1}N_{m1})$	124.9
$R_e(N_{p1}-C_{\alpha 1})$	1.320	$R_e(C_{\beta 3}-C_{\beta 4})$	1.429	$\alpha_{e}(C_{\alpha 1}N_{m1}C_{\alpha 1})$	129.3
$R_e(N_{p1}-C_{\alpha 2})$	1.368	$R_e(C_{\beta 3}-N_{t3})$	1.310	$\alpha_{e}(N_{p1}C_{\alpha 2}N_{m2})$	128.2
$R_e(C_{\alpha 1}-C_{\beta 1})$	1.456	$R_e(C_{\beta4}-N_{t4})$	1.310	$\alpha_{e}(C_{\alpha 2}N_{m2}C_{\alpha 3})$	124.3
$R_e(C_{\alpha 2}-C_{\beta 2})$	1.475	$R_e(N_{t3}-S_2)$	1.671	$\alpha_{e}(N_{p2}C_{\alpha 3}N_{m2})$	128.2
$R_e(C_{\beta 1}-C_{\beta 2})$	1.433	$R_e(N_{t4}-S_2)$	1.670	$\alpha_{e}(C_{\alpha 3}N_{p2}C_{\alpha 4})$	111.1
$R_e(C_{\beta 1}-N_{t1})$	1.311	$R_e(C_{\alpha 4}-N_{m3})$	1.326	$\alpha_{e}(N_{p2}C_{\alpha 3}C_{\beta 3})$	109.0
$R_e(C_{\beta 2}-N_{t2})$	1.312	$\alpha_{e}(C_{\alpha 1}N_{p1}C_{\alpha 2})$	110.3	$\alpha_{e}(N_{p2}C_{\alpha4}C_{\beta4})$	108.6
$R_e(N_{t1}-S_1)$	1.673	$\alpha_{e}(N_{p1}C_{\alpha 1}C_{\beta 1})$	111.2	$\alpha_{e}(C_{\alpha 3}C_{\beta 3}C_{\beta 4})$	105.6
$R_e(N_{t2}-S_1)$	1.665	$\alpha_{e}(N_{p1}C_{\alpha 2}C_{\beta 2})$	107.9	$\alpha_{e}(C_{\beta4}C_{\beta3}N_{t3})$	115.4
$R_e(C_{\alpha 1}-N_{m1})$	1.361	$\alpha_{e}(C_{\alpha 1}C_{\beta 1}C_{\beta 2})$	104.7	$\alpha_{e}(C_{\beta 3}C_{\beta 4}N_{t4})$	115.3
$R_e(C_{\alpha 2}-N_{m2})$	1.317	$\alpha_{e}(C_{\beta 2}C_{\beta 1}N_{t1})$	116.0	$\alpha_{e}(C_{\beta 3}N_{t3}S_{2})$	104.9
$R_e(C_{\alpha 3}-N_{m2})$	1.331	$\alpha_{e}(C_{\beta 1}C_{\beta 2}N_{t2})$	114.2	$\alpha_e(C_{\beta4}N_{t4}S_2)$	105.0
$R_e(N_{p2}-C_{\alpha 3})$	1.349	$\alpha_{e}(C_{\beta 1}N_{t1}S_{1})$	104.5	$\alpha_{e}(N_{t3}S_{1}N_{t4})$	99.4
$R_e(N_{p2}-C_{\alpha 4})$	1.352	$\alpha_{e}(C_{\beta 2}N_{t2}S_{1})$	105.8	$\alpha_{e}(N_{p2}C_{\alpha4}N_{m3})$	128.7
$R_{e}(C_{\alpha 3}-C_{\beta 3})$	1.475	$\alpha_{e}(N_{t1}S_{1}N_{t2})$	99.5	$\alpha_{e}(C_{\alpha4}N_{m3}C_{\alpha4})$	125.0

Table S6. Cartesian coordinates (in Å) of atoms and total energies for optimized molecular structures.

1. [TTDPaLi₂], D_{4h} structure

Charge	Х	Y	Z
3	0.000000000	0.00000000	-1.007889151
3	0.000000000	0.00000000	1.007889151
7	0.000000000	1.972077549	0.00000000
7	-1.972077549	0.00000000	0.000000000
7	0.000000000	-1.972077549	0.00000000
7	1.972077549	0.00000000	0.00000000
6	-1.125868606	2.768444196	0.00000000
6	-2.768444196	-1.125868606	0.000000000
6	1.125868606	-2.768444196	0.00000000
6	2.768444196	-1.125868606	0.00000000
6	1.125868606	2.768444196	0.00000000
6	-2.768444196	1.125868606	0.00000000
6	-1.125868606	-2.768444196	0.00000000
6	2.768444196	1.125868606	0.00000000
6	-0.708865954	4.164256249	0.000000000
6	-4.164256249	-0.708865954	0.00000000
6	0.708865954	-4.164256249	0.00000000
6	4.164256249	-0.708865954	0.000000000
6	0.708865954	4.164256249	0.00000000
6	-4.164256249	0.708865954	0.00000000
6	-0.708865954	-4.164256249	0.000000000
6	4.164256249	0.708865954	0.00000000
7	-1.269056864	5.356362132	0.000000000
7	-5.356362132	-1.269056864	0.000000000
7	1.269056864	-5.356362132	0.000000000
7	5.356362132	-1.269056864	0.000000000
7	1.269056864	5.356362132	0.00000000
7	-5.356362132	1.269056864	0.000000000
7	-1.269056864	-5.356362132	0.000000000
7	5.356362132	1.269056864	0.00000000
16	0.000000000	6.417416663	0.00000000
16	-6.417416663	0.00000000	0.00000000
16	0.000000000	-6.417416663	0.00000000
16	6.417416663	0.00000000	0.00000000
7	-2.386210636	2.386210636	0.00000000
7	-2.386210636	-2.386210636	0.00000000
7	2.386210636	-2.386210636	0.00000000
7	2.386210636	2.386210636	0.00000000

TOTAL ENERGY = -3093.1708496553 (Ha)

Charge	Х	Y	Z
3	-0.068567028	-1.007494935	0.00000000
3	0.068567028	1.007494935	0.00000000
7	0.000000000	0.00000000	-1.969635697
7	0.000000000	0.00000000	1.969635697
7	-1.975923922	-0.037914635	0.00000000
7	1.975923922	0.037914635	0.00000000
6	-1.126026695	-0.006691979	2.766386269
6	1.126026695	0.006691979	-2.766386269
6	-1.126026695	-0.006691979	-2.766386269
6	1.126026695	0.006691979	2.766386269
6	-2.771127344	-0.018533834	1.125843971
6	2.771127344	0.018533834	-1.125843971
6	-2.771127344	-0.018533834	-1.125843971
6	2.771127344	0.018533834	1.125843971
6	-0.708810514	-0.002841255	4.162079826
6	0.708810514	0.002841255	-4.162079826
6	-0.708810514	-0.002841255	-4.162079826
6	0.708810514	0.002841255	4.162079826
6	-4.166897555	0.003090814	0.708996101
6	4.166897555	-0.003090814	-0.708996101
6	-4.166897555	0.003090814	-0.708996101
6	4.166897555	-0.003090814	0.708996101
7	-5.358758590	0.022040843	1.269051403
7	5.358758590	-0.022040843	-1.269051403
7	-5.358758590	0.022040843	-1.269051403
7	5.358758590	-0.022040843	1.269051403
16	0.00000000	0.00000000	-6.415216922
16	0.000000000	0.00000000	6.415216922
16	-6.419777155	0.037950405	0.00000000
16	6.419777155	-0.037950405	0.00000000
7	-1.269026800	-0.005080652	5.354210785
7	1.269026800	0.005080652	-5.354210785
7	-1.269026800	-0.005080652	-5.354210785
7	1.269026800	0.005080652	5.354210785
7	-2.386874818	-0.013442650	2.385575604
7	2.386874818	0.013442650	-2.385575604
7	-2.386874818	-0.013442650	-2.385575604
7	2.386874818	0.013442650	2.385575604

TOTAL ENERGY = -3093.1708629450 (Ha)

Charge	Х	Y	Ζ
3	0.000000000	0.00000000	0.00000000
7	2.011131824	0.00000000	0.00000000
7	0.000000000	2.011131824	0.00000000
7	-2.011131824	0.00000000	0.00000000
7	0.000000000	-2.011131824	0.00000000
6	2.780811676	1.125414852	0.00000000
6	-1.125414852	2.780811676	0.00000000
6	-2.780811676	-1.125414852	0.00000000
6	1.125414852	2.780811676	0.00000000
6	-2.780811676	1.125414852	0.00000000
6	-1.125414852	-2.780811676	0.00000000
6	2.780811676	-1.125414852	0.00000000
6	1.125414852	-2.780811676	0.00000000
6	4.188085286	0.713826734	0.00000000
6	-0.713826734	4.188085286	0.00000000
6	-4.188085286	-0.713826734	0.00000000
6	0.713826734	4.188085286	0.00000000
6	-4.188085286	0.713826734	0.00000000
6	-0.713826734	-4.188085286	0.00000000
6	4.188085286	-0.713826734	0.00000000
6	0.713826734	-4.188085286	0.00000000
7	5.376487477	1.272790427	0.00000000
7	-1.272790427	5.376487477	0.00000000
7	-5.376487477	-1.272790427	0.00000000
7	1.272790427	5.376487477	0.00000000
7	-5.376487477	1.272790427	0.00000000
7	-1.272790427	-5.376487477	0.00000000
7	5.376487477	-1.272790427	0.00000000
7	1.272790427	-5.376487477	0.00000000
16	6.448054629	0.00000000	0.00000000
16	0.000000000	6.448054629	0.00000000
16	-6.448054629	0.00000000	0.00000000
16	0.000000000	-6.448054629	0.00000000
7	2.388828596	2.388828596	0.00000000
7	-2.388828596	2.388828596	0.00000000
7	-2.388828596	-2.388828596	0.00000000
7	2.388828596	-2.388828596	0.00000000

TOTAL ENERGY = -3085.7148700722 (Ha)

Charge	Х	Y	Z
3	0.000000000	0.00000000	-0.019725753
7	-1.432234768	0.00000000	1.422109782
7	1.432234768	0.00000000	1.422109782
7	-1.424886681	0.00000000	-1.414966720
7	1.424886681	0.00000000	-1.414966720
6	-2.785192700	0.00000000	1.163362343
6	2.785192700	0.00000000	1.163362343
6	-1.171987534	0.00000000	-2.754124480
6	1.171987534	0.00000000	-2.754124480
6	-2.766944846	0.00000000	-1.177587535
6	2.766944846	0.00000000	-1.177587535
6	-1.222895331	0.00000000	2.741250857
6	1.222895331	0.00000000	2.741250857
6	-3.485398444	0.00000000	2.451544540
6	3.485398444	0.00000000	2.451544540
6	-2.456856757	0.00000000	-3.465804607
6	2.456856757	0.00000000	-3.465804607
6	-3.466754414	0.00000000	-2.466538123
6	3.466754414	0.00000000	-2.466538123
6	-2.479158339	0.00000000	3.459489583
6	2.479158339	0.00000000	3.459489583
7	-4.714114087	0.00000000	2.917854490
7	4.714114087	0.00000000	2.917854490
7	-2.894231145	0.00000000	-4.702606930
7	2.894231145	0.00000000	-4.702606930
7	-4.699538525	0.00000000	-2.916255009
7	4.699538525	0.00000000	-2.916255009
7	-2.908865702	0.00000000	4.700885105
7	2.908865702	0.00000000	4.700885105
16	-4.565620444	0.00000000	4.565710141
16	4.565620444	0.00000000	4.565710141
16	-4.548980866	0.00000000	-4.569907543
16	4.548980866	0.00000000	-4.569907543
7	-3.384791357	0.00000000	-0.007519446
7	3.384791357	0.00000000	-0.007519446
7	0.00000000	0.00000000	-3.364771018
7	0.00000000	0.00000000	3.322842155
1	0.000000000	0.00000000	4.335451606

TOTAL ENERGY = -3086.1986341181 (Ha)

Charge	Х	Y	Z
1	-1.257922567	-0.792665280	0.000000000
3	0.190566062	0.551071505	0.000000000
7	-0.021997936	0.053803128	1.961368319
7	-0.021997936	0.053803128	-1.961368319
7	-2.100962487	-0.238805880	0.000000000
7	2.050028767	0.317362383	0.00000000
6	-1.126556605	-0.103375899	2.765470138
6	-1.126556605	-0.103375899	-2.765470138
6	-2.839473982	-0.078377842	1.175438144
6	-2.839473982	-0.078377842	-1.175438144
6	1.117616630	0.070629235	2.732318770
6	1.117616630	0.070629235	-2.732318770
6	2.812971488	0.268306232	1.123911259
6	2.812971488	0.268306232	-1.123911259
6	-0.687870332	-0.197386246	4.153401709
6	-0.687870332	-0.197386246	-4.153401709
6	-4.178363338	0.199063706	0.715322000
6	-4.178363338	0.199063706	-0.715322000
6	0.724954402	-0.088266681	4.133141568
6	0.724954402	-0.088266681	-4.133141568
6	4.221944234	0.257820861	0.711969824
6	4.221944234	0.257820861	-0.711969824
7	-1.222975430	-0.350309854	5.344809003
7	-1.222975430	-0.350309854	-5.344809003
7	-5.346318866	0.482565205	1.266460847
7	-5.346318866	0.482565205	-1.266460847
7	1.307150837	-0.149239451	5.309994638
7	1.307150837	-0.149239451	-5.309994638
7	5.409369412	0.232387372	1.269444305
7	5.409369412	0.232387372	-1.269444305
16	0.064669670	-0.344163035	6.387953800
16	0.064669670	-0.344163035	-6.387953800
16	-6.367819898	0.713968708	0.000000000
16	6.477709612	0.215108684	0.00000000
7	-2.400085834	-0.110316916	2.405186611
7	-2.400085834	-0.110316916	-2.405186611
7	2.384531948	0.184830997	2.367646651
7	2.384531948	0.184830997	-2.367646651

TOTAL ENERGY = -3086.1729795300 (Ha)

Charge	Х	Y	Z
7	2.057275462	0.00000000	0.00000000
7	-2.057275462	0.00000000	0.000000000
7	0.000000000	-1.991978537	0.000000000
7	0.000000000	1.991978537	0.00000000
6	2.802117689	-1.164454947	0.000000000
6	-2.802117689	-1.164454947	0.000000000
6	2.802117689	1.164454947	0.00000000
6	-2.802117689	1.164454947	0.00000000
6	1.114796604	-2.780000051	0.000000000
6	-1.114796604	-2.780000051	0.000000000
6	1.114796604	2.780000051	0.00000000
6	-1.114796604	2.780000051	0.000000000
6	4.181928644	-0.712624171	0.000000000
6	-4.181928644	-0.712624171	0.000000000
6	4.181928644	0.712624171	0.00000000
6	-4.181928644	0.712624171	0.000000000
6	0.708605737	-4.186685996	0.00000000
6	-0.708605737	-4.186685996	0.00000000
6	0.708605737	4.186685996	0.00000000
6	-0.708605737	4.186685996	0.00000000
7	5.377315252	-1.267213294	0.00000000
7	-5.377315252	-1.267213294	0.00000000
7	5.377315252	1.267213294	0.00000000
7	-5.377315252	1.267213294	0.00000000
7	1.269732958	-5.373859070	0.00000000
7	-1.269732958	-5.373859070	0.00000000
7	1.269732958	5.373859070	0.00000000
7	-1.269732958	5.373859070	0.00000000
16	6.432549748	0.00000000	0.00000000
16	-6.432549748	0.00000000	0.00000000
16	0.000000000	-6.442330953	0.00000000
16	0.000000000	6.442330953	0.00000000
7	2.384557245	-2.401235982	0.00000000
7	-2.384557245	-2.401235982	0.00000000
7	2.384557245	2.401235982	0.00000000
7	-2.384557245	2.401235982	0.00000000
1	1.046618324	0.00000000	0.00000000
1	-1.046618324	0.00000000	0.00000000

TOTAL ENERGY = -3079.1691980653 (Ha)

Charge	Х	Y	Z
7	2.020945579	0.00000000	0.00000000
7	0.000000000	2.020945579	0.00000000
7	-2.020945579	0.00000000	0.00000000
7	0.000000000	-2.020945579	0.00000000
6	2.778942988	1.119165590	0.00000000
6	-1.119165590	2.778942988	0.00000000
6	-2.778942988	-1.119165590	0.00000000
6	1.119165590	2.778942988	0.00000000
6	-2.778942988	1.119165590	0.00000000
6	-1.119165590	-2.778942988	0.00000000
6	2.778942988	-1.119165590	0.00000000
6	1.119165590	-2.778942988	0.00000000
6	4.198802090	0.719183150	0.00000000
6	-0.719183150	4.198802090	0.00000000
6	-4.198802090	-0.719183150	0.00000000
6	0.719183150	4.198802090	0.00000000
6	-4.198802090	0.719183150	0.00000000
6	-0.719183150	-4.198802090	0.00000000
6	4.198802090	-0.719183150	0.00000000
6	0.719183150	-4.198802090	0.00000000
7	5.384573341	1.278255297	0.00000000
7	-1.278255297	5.384573341	0.00000000
7	-5.384573341	-1.278255297	0.00000000
7	1.278255297	5.384573341	0.00000000
7	-5.384573341	1.278255297	0.00000000
7	-1.278255297	-5.384573341	0.00000000
7	5.384573341	-1.278255297	0.00000000
7	1.278255297	-5.384573341	0.00000000
16	6.468418231	0.00000000	0.00000000
16	0.000000000	6.468418231	0.00000000
16	-6.468418231	0.00000000	0.00000000
16	0.000000000	-6.468418231	0.00000000
7	2.389641236	2.389641236	0.00000000
7	-2.389641236	2.389641236	0.00000000
7	-2.389641236	-2.389641236	0.00000000
7	2.389641236	-2.389641236	0.00000000

TOTAL ENERGY = -3078.0230506409 (Ha)

Charge	Х	Y	Ζ
7	2.024606944	0.00000000	-0.037117703
7	-2.024606944	0.00000000	-0.037117703
7	0.000000000	0.00000000	-2.016820145
7	0.000000000	0.00000000	1.984913813
6	2.770589290	0.00000000	1.098899306
6	-2.770589290	0.00000000	1.098899306
6	1.166848838	0.00000000	-2.771890074
6	-1.166848838	0.00000000	-2.771890074
6	1.112848329	0.00000000	2.752385105
6	-1.112848329	0.00000000	2.752385105
6	2.820358573	0.00000000	-1.130570947
6	-2.820358573	0.00000000	-1.130570947
6	4.194204162	0.00000000	0.717429165
6	-4.194204162	0.00000000	0.717429165
6	0.714017402	0.00000000	-4.147476078
6	-0.714017402	0.00000000	-4.147476078
6	0.713378705	0.00000000	4.173196920
6	-0.713378705	0.00000000	4.173196920
6	4.224990426	0.00000000	-0.709214574
6	-4.224990426	0.00000000	-0.709214574
7	5.369037984	0.00000000	1.300287758
7	-5.369037984	0.00000000	1.300287758
7	1.270167535	0.00000000	-5.344408845
7	-1.270167535	0.00000000	-5.344408845
7	1.273952328	0.00000000	5.357224041
7	-1.273952328	0.00000000	5.357224041
7	5.421871592	0.00000000	-1.246218405
7	-5.421871592	0.00000000	-1.246218405
16	6.470792433	0.00000000	0.050015140
16	-6.470792433	0.00000000	0.050015140
16	0.000000000	0.00000000	-6.401351383
16	0.000000000	0.00000000	6.436178263
7	2.377546845	0.00000000	2.361888182
7	-2.377546845	0.00000000	2.361888182
7	2.422666813	0.00000000	-2.395489072
7	-2.422666813	0.00000000	-2.395489072
1	0.000000000	0.00000000	-0.993932614

TOTAL ENERGY = -3078.6621634009 (Ha)

Charge	Х	Y	Z
7	1.448359490	0.00000000	1.415590459
7	-1.448359490	0.00000000	1.415590459
7	1.437863599	0.00000000	-1.414302865
7	-1.437863599	0.00000000	-1.414302865
6	2.792274360	0.00000000	1.158870397
6	-2.792274360	0.00000000	1.158870397
6	1.175729157	0.00000000	-2.741065887
6	-1.175729157	0.00000000	-2.741065887
6	2.766491899	0.00000000	-1.182818769
6	-2.766491899	0.00000000	-1.182818769
6	1.230161355	0.00000000	2.717770436
6	-1.230161355	0.00000000	2.717770436
6	3.501466815	0.00000000	2.452289567
6	-3.501466815	0.00000000	2.452289567
6	2.458121658	0.00000000	-3.475697902
6	-2.458121658	0.00000000	-3.475697902
6	3.478422934	0.00000000	-2.474760694
6	-3.478422934	0.00000000	-2.474760694
6	2.482271304	0.00000000	3.460140063
6	-2.482271304	0.00000000	3.460140063
7	4.725015300	0.00000000	2.924883756
7	-4.725015300	0.00000000	2.924883756
7	2.888712920	0.00000000	-4.712471293
7	-2.888712920	0.00000000	-4.712471293
7	4.707692160	0.00000000	-2.927006081
7	-4.707692160	0.00000000	-2.927006081
7	2.901191141	0.00000000	4.702258920
7	-2.901191141	0.00000000	4.702258920
16	4.569416298	0.00000000	4.582546201
16	-4.569416298	0.00000000	4.582546201
16	4.554668809	0.00000000	-4.590881369
16	-4.554668809	0.00000000	-4.590881369
7	3.397804638	0.00000000	-0.010554767
7	-3.397804638	0.00000000	-0.010554767
7	0.00000000	0.00000000	-3.353301773
7	0.00000000	0.00000000	3.301061314
1	0.00000000	0.00000000	4.311226480

TOTAL ENERGY = -3078.6222830322 (Ha)

	electronic transition	λ	Терм	electronic transition	λ	
		<u>[μ-(TT</u> I	<u>)Pa) L</u> i	2		
$1^{1}E_{u}$	$2a_{1u} \rightarrow 7e_g(90)$	615(0.481)	$8^{1}E_{u}$	$6a_{2u} \rightarrow 8e_g(76); 6e_g \rightarrow 7a_{2u}(14)$	255(0.671)	
$2^{1}E_{u}$	$2a_{1u} \rightarrow 8e_g(85); 6a_{2u} \rightarrow 7e_g(12)$	398(0.019)		$6e_g \rightarrow 7a_{2u}(25); 4b_{2u} \rightarrow 8e_g(24);$	250(0.515)	
$3^{1}E_{u}$	$4b_{2u} \rightarrow 7e_g(82); 5a_{2u} \rightarrow 7e_g(14)$	363(0.092)	$9^{\circ}E_{u}$	$2b_{1u} \rightarrow 7e_g(20); 1a_{1u} \rightarrow 7e_g(14);$	250(0.515)	
5 ¹ E ₁₀	$6a_{2u} \rightarrow 7e_{\sigma}(75); 2a_{1u} \rightarrow 8e_{\sigma}(10)$	325(2.122)	$12^{1}E_{u}$	$1a_{1\mu} \rightarrow 7e_{\sigma}(58); 5a_{2\mu} \rightarrow 8e_{\sigma}(24)$	231(0.160)	
u		[TTD]	PaLi]	·····		
$1^{1}E_{n}$	$2a_{1u} \rightarrow 7e_{g}(88)$	588(0.454)	5 ¹ E ₁₁	$4a_{2\mu} \rightarrow 7e_{\sigma}(82); 5a_{2\mu} \rightarrow 8e_{\sigma}(12)$	305(0.451)	
$2^{1}E_{u}$	$2a_{1y} \rightarrow 8e_{q}(86): 5a_{2y} \rightarrow 7e_{q}(13)$	428(0.082)	6 ¹ E ₁₁	$5a_{2u} \rightarrow 8e_{g}(83)$; $4a_{2u} \rightarrow 7e_{g}(10)$	285(1.026)	
3 ¹ E ₂	$5a_{2u} \rightarrow 7e_{\sigma}(44): 4b_{2u} \rightarrow 7e_{\sigma}(33)$	344(1.006)	8 ¹ E ₁	$6e_{a} \rightarrow 6a_{2u}(48): 6e_{a} \rightarrow 5b_{2u}(37)$	261(0.466)	
$4^{1}E_{u}$	$4b_{2u} \rightarrow 7e_{-}(61): 5a_{2u} \rightarrow 7e_{-}(29)$	324(0.362)	$11^{1}E_{u}$	$2b_1 \rightarrow 7e_7(69)$; $4a_2 \rightarrow 8e_7(24)$	234(0.252)	
$[TTDPa]^{2-}$						
1 ¹ E.,	$2a_{1n} \rightarrow 7e_{-}(85)$	596(0.288)	6 ¹ E.,	$6e_{-}\rightarrow 6a_{-}(44)^{\cdot} 4a_{2}\rightarrow 7e_{-}(33)^{\cdot}$	276(0.118)	
$2^{1}E$	$2a_1 \longrightarrow 8e(78): 5a_2 \longrightarrow 7e(20)$	473(0.138)	U Du	$6e \rightarrow 5b_{2}(22)$	2,0(0.110)	
$1^1 A_2$	$16h_{c} \rightarrow 5h_{c} (74) \cdot 28e \rightarrow 7e (24)$	402(0.001)	7 ¹ F	$4_{22} \rightarrow 7e(62): 6e \rightarrow 5b_{21}(18):$	275(0.699)	
31E	$\frac{100_{1g} - 30_{2u}(74), 200_{u} - 70_{g}(24)}{52}$	371(0.653)	/ Lu	$4a_{2u} \rightarrow 7c_{g}(02), 0c_{g} \rightarrow 50_{2u}(18),$	275(0.077)	
$\int L_{\rm u}$ $\Lambda^1 {\rm F}$	$5a_{2u} \rightarrow 7c_{g}(55), 5a_{2u} \rightarrow 8c_{g}(28)$	333(1522)	81E	$6c_g \rightarrow 6a_{2u}(10)$	269(0.470)	
E _u	$3a_{2u} \rightarrow \delta e_{g}(03), 3a_{2u} \rightarrow \ell e_{g}(13)$	303(0.086)	σĽu	$0e_g \rightarrow 30_{2u}(38), 0e_g \rightarrow 0a_{2u}(33)$	209(0.470)	
J ⁻ E _u	$40_{2u} \rightarrow /e_g(88)$	<u> 505(0.080)</u> TTD	Doll 1			
11D	$4a \rightarrow 7b (01)$		<u>гап₂</u>	$7h (0) \cdot 9h (29)$	225(0,148)	
$1^{1}D_{2u}$	$4a_u \rightarrow /b_{2g}(91)$	570(0.252)	$4^{1}D_{2u}$	$/b_{1u} \rightarrow /b_{3g}(60); 8b_{1u} \rightarrow /b_{3g}(38);$	323(0.148)	
$1^{1}B_{3u}$	$\frac{4a_u \rightarrow /b_{3g}(86)}{71}$	570(0.252)	$5^{1}B_{3u}$	$/b_{1u} \rightarrow /b_{2g}(/4); 8b_{1u} \rightarrow /b_{2g}(12)$	312(0.260)	
$2^{T}B_{3u}$	$9b_{1u} \rightarrow b_{2g}(90)$	414(0.058)	$5^{T}B_{2u}$	$8b_{1u} \rightarrow /b_{3g}(42); /b_{1u} \rightarrow /b_{3g}(34)$	305(0.967)	
2^1B_{2u}	$4a_u \rightarrow 8b_{2g}(59)$	391(0.058)	8 ¹ B _{2u}	$6b_{3g} \rightarrow 11b_{1u}(44);9b_{1u} \rightarrow 8b_{3g}(23);$ $3a \rightarrow 7b_2 (16); 2a \rightarrow 7b_2 (13)$	253(0.575)	
$A^1\mathbf{B}_2$	$8b_{1} \rightarrow 7b_{2} (90)$; $7b_{1} \rightarrow 7b_{2} (20)$	330(1.039)	8 ¹ B.	$\frac{5u_1}{6b_2} + \frac{10b_2}{2g(15)} + \frac{10b_2}{2g(15)}$	249(0.363)	
- D _{3u}	$100_{1u} - 70_{2g}(50), 70_{1u} - 70_{2g}(20)$	TDP7I (H) C	(prote	$\frac{1}{1002g} - 1001u(10)$	247(0.303)	
11.4."	60a" > 70a'(01)	640(0,208)	12 ¹ A "	$762' \times 612''(30): 772' \times 612''(23)$	320(0.866)	
1 A 11 A'	$60a'' \rightarrow 73a(91)$	500(0.208)	12 A 281 A "	$76a \rightarrow 01a (39), 77a' \rightarrow 01a (23)$	320(0.800)	
1 A 21 A !!	$00a \rightarrow 01a (88)$	390(0.249)	20 A	$78a \rightarrow 02a (00), 77a \rightarrow 02a (28)$	238(0.083)	
2'A 21 A "	$60a \rightarrow 80a(91)$	400(0.048)	29 ¹ A'	$60a \rightarrow 64a (20); 69a \rightarrow 79a (19);$	256(0.096)	
JA	$00a \rightarrow 61a(91)$ $77a' \rightarrow 70a'(55):60a'' \rightarrow 62a''(24):$	418(0.004)		$52a \rightarrow 01a$ (10), $08a \rightarrow 73a$ (10)		
2 ¹ A'	$77a \rightarrow 79a'(33),00a \rightarrow 02a'(24),$ $78a' \rightarrow 79a'(14)$	399(0.023)	31 ¹ A'	$78a' \rightarrow 82a'(15)$, $78a' \rightarrow 82a'(15)$, $78a' \rightarrow 82a'(15)$, $78a' \rightarrow 82a'(15)$	255(0.106)	
81A'	74a'→79a'(33);76a'→79a'(23);	342(0.362)	30 ¹ A"	59a"→81a'(41); 53a"→79a'(12)	254(0.319)	
	77a' →79a'(12)		32 ¹ A"	77a'→62a"(52); 78a'→62a"(29)	252(0.123)	
01.4.1	$74a' \rightarrow 79a'(45);57a'' \rightarrow 61a''(24);$	222(0.2(0)	22144	$74a' \rightarrow 80a'(30); 76a' \rightarrow 81a'(28);$	252(0.120)	
9'A'	76a' →79a'(11)	333(0.266)	33'A'	77a' →82a'(10)	252(0.128)	
10 ¹ A'	57a"→61a"(64);76a'→79a'(13)	326(0.449)				
	H[]	[TDPzLi], C ₂	_v (proto	onated N _m)		
$1^{1}B_{1}$	$12a_2 \rightarrow 14b_2 (89)$	590(0.362)	$13^{1}B_{1}$	$12b_2 \rightarrow 14a_2(50); 10b_2 \rightarrow 13a_2(39)$	268(0.145)	
$1^{1}A_{1}$	$12a_2 \rightarrow 13a_2 (89)$	576(0.225)	$15^{1}B_{1}$	$10a_2 \rightarrow 15b_2 (90)$	263(0.170)	
$7^{1}A_{1}$	$12b_2 \rightarrow 14b_2 (59)$	322(1.013)	$14^{1}A_{1}$	$11b_2 \rightarrow 15b_2(64); 13b_2 \rightarrow 16b_2(20)$	259(0.233)	
$7^{1}B_{1}$	$12b_2 \rightarrow 13a_2$ (74)	317(0.692)	$16^{1}A_{1}$	$10a_2 \rightarrow 14a_2(73); 11a_2 \rightarrow 15a_2(13)$	256(0.110)	
$11^{1}A_{1}$	$10b_2 \rightarrow 14b_2 (79)$	280(0.115)	$17^{1}B_{1}$	$11a_2 \rightarrow 16b_2(54); 10b_2 \rightarrow 13a_2(18)$	253(0.215)	
Терм	Электронный переход	λ	Терм	Электронный переход	λ	
-1		TDPaHI, C2	(prote	$(n_{\rm n})$	1	
$1^{1}B_{1}$	$10a_2 \rightarrow 16b_2(89)$	634(0.162)	9 ¹ B ₁	$15b_2 \rightarrow 12a_2(75) \cdot 13b_2 \rightarrow 11a_2(17)$	290(0.547)	
$1^{1}A_{1}$	$10a_2 \rightarrow 11a_2(84)$ $15b_2 \rightarrow 16b_2(11)$	569(0.210)	$10^{1}A_{1}$	$\frac{15b_2 \rightarrow 19b_2(88)}{15b_2 \rightarrow 19b_2(88)}$	289(0.279)	
$2^{1}B_{1}$	$10a_2 \rightarrow 17b_2 (89)$	480(0.089)	14 ¹ A ₁	$13b_2 \rightarrow 17b_2(51); 14b_2 \rightarrow 18b_2(17);$	264(0.095)	
3 ¹ A ₁	$15b_2 \rightarrow 16b_2(52); 10a_2 \rightarrow 12a_2(17);$	368(0.548)	15 ¹ A ₁	$\frac{11b_2 \rightarrow 16b_2(14)}{13b_2 \rightarrow 17b_2(40); 11b_2 \rightarrow 16b_2(30)}$	262(0.116)	
5 ¹ B ₁	$\begin{array}{c} 13b_2 \rightarrow 16b_2(10) \\ 9a_2 \rightarrow 16b_2 (40); 15b_2 \rightarrow 11a_2(25); \\ 14b_2 \rightarrow 11a_2(20) \end{array}$	362(0.220)	13 ¹ B ₁	$8a_2 \rightarrow 16b_2 (78); 11b_2 \rightarrow 11a_2(15)$	262(0.198)	
$7^{1}B_{1}$	$14b_2 \rightarrow 11a_2(52); 15b_2 \rightarrow 11a_2(30)$	329(0.216)	19 ¹ A ₁	$8a_2 \rightarrow 11a_2(46); 13b_2 \rightarrow 18b_2(17);$	248(0.098)	
5 ¹ A,	$13b_{2} \rightarrow 16b_{2}(51) \cdot 15b_{2} \rightarrow 17b_{2}(37)$	326(0.101)	18 ¹ B.	$140_2 \rightarrow 190_2(13)$ $7a_2 \rightarrow 16b_2(53): 13b_2 \rightarrow 12a_2(34)$	238(0.129)	

Table S7. Wavelength (λ, nm) and oscillator strength (in parenthesis), corresponding to the energies of the electronic transitions ^{a)} from the ground^{b)} to the excited singlet states.

					-			
$7^{1}A_{1}$	$15b_2 \rightarrow 17b_2(44); 13b_2 \rightarrow 16b_2(27)$	309(0.419)	$22^{1}A_{1}$	$7a_2 \rightarrow 11a_2(70); 12b_2 \rightarrow 18b_2(20)$	231(0.085)			
8 ¹ B ₁	$13b_2 \rightarrow 11a_2(67); 15b_2 \rightarrow 12a_2(21)$	307(0.327)						
	$\{H[TTDPaLi]\}^{-}, C_{2v}$ (protonated N _m)							
$1^{1}A_{1}$	$12a_2 \rightarrow 13a_2(85)$	588(0.133)	8^1A_1	$11b_2 \rightarrow 14b_2(66); 12b_2 \rightarrow 14b_2(10)$	307(0.543)			
$1^{1}B_{1}$	$12a_2 \rightarrow 14b_2(81)$	585(0.323)	9 ¹ B ₁	$12a_2 \rightarrow 17b_2(49); 13b_2 \rightarrow 14a_2(14); \\ 12b_2 \rightarrow 13a_2(13)$	303(0.190)			
$4^{1}B_{1}$	$11a_2 \rightarrow 14b_2(69); 13b_2 \rightarrow 13a_2(20)$	377(0.152)	$10^{1}A_{1}$	$13b_2 \rightarrow 16b_2(64); 11a_2 \rightarrow 14a_2(19)$	292(0.226)			
4 ¹ A ₁	$13b_2 \rightarrow 14b_2(40); 12b_2 \rightarrow 14b_2(26); \\ 12a_2 \rightarrow 15a_2(12)$	371(0.283)	12 ¹ B ₁	$11b_2 \rightarrow 13a_2(70); 13b_2 \rightarrow 15a_2(11)$	286(0.313)			
$5^{1}B_{1}$	$13b_2 \rightarrow 13a_2(56); 11a_2 \rightarrow 14b_2(27)$	359(0.155)	$13^{1}B_{1}$	$12b_2 \rightarrow 14a_2(93)$	275(0.165)			
6 ¹ A ₁	$13b_2 \rightarrow 15b_2(44); 12b_2 \rightarrow 14b_2(31); \\11b_2 \rightarrow 14b_2(13)$	343(0.233)	$14^{1}B_{1}$	$10a_2 \rightarrow 15b_2(68); 9a_2 \rightarrow 14b_2(21)$	267(0.184)			
$7^{1}A_{1}$	$13b_2 \rightarrow 15b_2(47); 12b_2 \rightarrow 14b_2(20)$	338(0.189)	$15^{1}B_{1}$	$11a_2 \rightarrow 16b_2(47); 9a_2 \rightarrow 14b_2(28);$ $10a_2 \rightarrow 15b_2(16)$	263(0.092)			
8 ¹ B ₁	$\begin{vmatrix} 12b_2 \rightarrow 13a_2(45); 12a_2 \rightarrow 17b_2(27); \\ 10a_2 \rightarrow 14b_2(10) \end{vmatrix}$	311(0.183)	$15^{1}A_{1}$	$10a_2 \rightarrow 14a_2(35); 11a_2 \rightarrow 15a_2(32);$ $10b_2 \rightarrow 14b_2(14)$	258(0.301)			

a) one-electron transitions between filled and unoccupied MO and their contributions (>10%) to the corresponding electronic configurations of the excited states

^{b)} Electronic configurations of the groud:

 $\begin{bmatrix} TTDPzLi_2 \end{bmatrix} \dots (19a_{1g})^2 (10a_{2g})^2 (2a_{1u})^2 (6a_{2u})^2 (16b_{1g})^2 (12b_{2g})^2 (2b_{1u})^2 (4b_{2u})^2 (6e_g)^2 (28e_u)^2; \\ \begin{bmatrix} TTDPaLi \end{bmatrix} \dots (19a_{1g})^2 (10a_{2g})^2 (2a_{1u})^2 (5a_{2u})^2 (16b_{1g})^2 (12b_{2g})^2 (2b_{1u})^2 (4b_{2u})^2 (6e_g)^2 (28e_u)^2; \\ \begin{bmatrix} TTDPa \end{bmatrix}^2 \dots (18a_{1g})^2 (10a_{2g})^2 (2a_{1u})^2 (5a_{2u})^2 (16b_{1g})^2 (12b_{2g})^2 (2b_{1u})^2 (4b_{2u})^2 (6e_g)^2 (28e_u)^2; \\ \begin{bmatrix} TTDPa \end{bmatrix}^2 \dots (18a_{1g})^2 (10a_{2g})^2 (2a_{1u})^2 (5a_{2u})^2 (16b_{1g})^2 (12b_{2g})^2 (2b_{1u})^2 (4b_{2u})^2 (6e_g)^2 (28e_u)^2; \\ \begin{bmatrix} TTDPa \end{bmatrix}^2 \dots (34a_g)^2 (4a_u)^2 (22b_{1g})^2 (9b_{1u})^2 (6b_{2g})^2 (28b_{2u})^2 (6b_{3g})^2 (28b_{3u})^2; \\ \end{bmatrix}$

 $\begin{array}{l} [TTDPaLiH] = C_{s} - ... (78a')^{2} (60a'')^{2}; C_{2v} - ... (59a_{1})^{2} (12a^{2})^{2} (54b_{1})^{2} (13b_{2})^{2} \\ [TTDPaH] = ... (62a_{1})^{2} (10a_{2})^{2} (50b_{1})^{2} (15b_{2})^{2}; \\ \{H[TTDPaH]\} = ... (58a_{1})^{2} (12a_{2})^{2} (54b_{1})^{2} (13b_{2})^{2} \end{array}$

	<u> </u>	/ =1			
D _{4h}	C _{2h}	D _{4h}	C _{2h}	D _{4h}	C _{2h}
A0i(a)	21(b _g)	527(a _{2u} , 62.8)	527(b _u ,62.8)	853(a _{1g})	853(a _g)
$40l(e_g)$	33(a _g)	$542(a_{1u})$	$542(a_u, 0.0)$	<u>876(a</u> 45 0)	876(a _u ,22.9)
15(b _{2u})	$15(b_u, 0.0)$	542(a _{1g})	542(a _g)	$870(e_{\rm u}, 43.9)$	877(b _u ,22.6)
$42(a_{2u}, 0.2)$	$42(b_u, 0.2)$	582(b _{1g})	583(a _g)	927(b _{2g})	927(b _g)
55(b _{1u})	$55(a_u, 0.0)$	590(a _{1g})	591(a _g)	$1030(b_{2g})$	1029(b _g)
86(2)	98(a _g)	608(2, 22, 2)	$608(a_u, 16.2)$	1070(2, 2, 3)	$1077(b_u, 3.4)$
80(Cg)	103(b _g)	$008(e_{\rm u}, 33.2)$	609(b _u ,16.2)	$10/9(e_u, 5.5)$	$1080(a_u, 1.3)$
117(b _{2g})	117(b _g)	617(2)	617(a _g)	1100(-452.4)	1109(b _u ,226.9)
121(b _{1g})	137(a _g)	$01/(e_g)$	617(b _g)	$1109(e_{\rm u}, 432.4)$	$1109(a_u, 227.4)$
129(-2.9)	$128(b_u, 1.5)$	622(a _{2g})	622(b _g)	$1135(a_{2g})$	1135(b _g)
$120(e_{\rm u}, 5.8)$	$128(a_u, 2.0)$	685(b _{1u})	$684(a_u, 19.6)$	$1181(a_{2g})$	1181(b _g)
$133(b_{2u})$	$133(b_u, 0.8)$	687(a _{2g})	688(b _g)	1199(b _{2g})	1199(b _g)
142(2)	145(b _g)	601(2, 280, 1)	692(b _u ,145.2)	$1248(b_{1g})$	1248(a _g)
143(e _g)	155(a _g)	$0,1(\mathbf{c}_{u}, 20, 1)$	692(a _u ,125.2)	$1272(a_{1g})$	1272(a _g)
$148(a_{1u})$	$148(a_u, 0.0)$	714(a _{1g})	714(a _g)	1270(-526.4)	$1278(a_u, 265.1)$
215(a _{2u} , 55.3)	$210(b_u, 60.1)$	731(b _{1g})	732(a _g)	$12/9(e_{\rm u}, 520.4)$	1280(b _u ,269.9)
228(b _{2g})	228(b _g)	732(b _{2u})	$732(b_u, 0.3)$	1225(2 42 5)	1325(b _u ,19.8)
$232(a_{1g})$	233(a _g)	761(2)	761(a _g)	$1525(e_{\rm u}, 45.5)$	$1326(a_u, 23.2)$
236(a _{2g})	236(b _g)	701(e _g)	761(b _g)	$1346(a_{1g})$	1346(a _g)
265(a)	266(a _g)	762(2, 27, 6)	$762(a_u, 19.4)$	1364(b _{1g})	1364(a _g)
203(eg)	266(b _g)	$703(e_{\rm u}, 37.0)$	763(b _u ,19.6)	1422(2 0 2)	$1431(b_u, 0.2)$
266(b _{2u})	$260(b_u, 4.8)$	771(b _{2g})	772(b _g)	$1432(e_{\rm u}, 0.2)$	$1432(a_u, 0.1)$
267(2, 32, 0)	$273(a_u, 7.1)$	$777(a_{2u}, 30.6)$	777(b _u ,30.5)	1458(b _{1g})	1458(a _g)
$207(e_{\rm u}, 32.0)$	275(b _u ,10.4)	785(2 80 3)	785(b _u ,41.3)	1470(b _{2g})	1470(b _g)
274(b _{1u})	$275(a_u, 1.2)$	$783(e_{\rm u}, 80.3)$	$785(a_u, 40.4)$	$1473(a_{1g})$	1473(a _g)
$295(a_{2u}, 54.7)$	$294(b_u, 25.1)$	787(b _{1g})	787(a _g)	1505(a 0.7)	$1505(a_u, 0.5)$
303(e 60.6)	$306(a_u, 31.7)$	788(a _{1g})	788(a _g)	$1505(\mathbf{c}_{\mathrm{u}}, 0.7)$	$1505(b_u, 0.7)$
$505(c_{\rm u}, 00.0)$	$323(b_u, 44.4)$	800(a _{2g})	800(b _g)	$1525(a_{2g})$	1525(b _g)
312(a)	312(a _g)	820(b _{1u})	$820(a_u, 0.0)$	1537(a 13.0)	$1537(a_u, 6.5)$
512(Cg)	312(b _g)	823(a)	823(b _g)	$1557(c_{\rm u}, 15.0)$	1537(b _u ,6.6)
$352(a_{2u}, 2.1)$	$354(b_u, 5.3)$	823(Cg)	823(a _g)	$1562(a_{2g})$	1562(b _g)
512(b _{2g})	512(b _g)	823(a _{1u})	823(a _u ,0.0)	$1562(a_{1g})$	1562(a _g)
518(b _{2u})	$518(b_u, 0.0)$	833(0 27.4)	$833(a_u, 13.2)$	1572(a - 64.8)	$1572(b_u, 32.4)$
510(0)	519(a _g)	$0.00(C_{\rm u}, 27.4)$	833(b _u ,13.0)	$1372(C_{\rm u}, 04.0)$	$1572(a_u, 31.9)$
519(Cg)	519(b _g)	843(b _{1g})	844(a _g)	$1574(b_{2g})$	1575(b _g)
521(a 57)	524(a _u ,2.4)			$1604(b_{1g})$	1604(a _g)
$524(c_u, 5.7)$	$524(b_u, 2.6)$				

Table S8. Calculated frequencies of normal vibrations (cm⁻¹) for D_{4h} and C_{2h} geometric configurations of [μ-TTDPa)Li₂].

Symmetry and intensity (km/mol) of IR active vibrations. $D_{4h} - \Gamma_{vib} = 10a_{1g} + 8a_{2g} + 9b_{1g} + 9b_{2g} + 9e_g + 3a_{1u} + 6a_{2u} + 4b_{1u} + 5b_{2u} + 18e_u;$ $C_{2h} - \Gamma_{vib} = 28a_g + 26b_g + 25a_u + 29b_u.$

Table S9. Calculated frequencies of normal vibrations infrared active vibrational modes for anion [TTDPaLi]⁻ and [μ -(TTDPa)Li]₂.

	[TTDPzLi]	[µ-TTDPaLi ₂]		
$\omega_i(A_i)$	Assignment	$\omega_i(A_i)$	Assignment	
	Symme	etry A _{2u}		
37 (0)	dom	42 (0)	dom	
208 (6)	$fold(C_{\beta}-C_{\beta})$	215 (55)	$fold(C_{\beta}-C_{\beta})$	
328 (12)	fold(C_{β} - C_{β}), OPB(Li)	295 (55)	fold(C_{β} - C_{β}), OPB(Li)	
364 (1)	$OPB(N_m)$, $OPB(N_p)$, $OPB(Li)$	352 (2)	$OPB(N_m)$, $OPB(N_p)$, $OPB(Li_2)$	
520 (64)	$fold(N_t \cdots N_t)$	527 (63)	$fold(N_t \cdots N_t)$	
771 (22)	$fold(C_{\alpha} \cdots C_{\alpha})$	777 (31)	$fold(C_{\alpha} \cdots C_{\alpha})$	
	Symm	etry E _u		
129 (7)	IPR(Py+TD)	128 (4)	IPR(Py+TD)	
285 (12)	$r(M-N_p), \phi(C_{\alpha}N_mC_{\alpha}), \phi(N_mC_{\alpha}C_{\beta})$	267 (32)	$r(M-N_p), \varphi(C_{\alpha}N_mC_{\alpha}), \varphi(N_mC_{\alpha}C_{\beta})$	
467 (2)	r(M-N _p), IPR(TD)	303 (61)	$r(M-N_p), \phi(C_{\alpha}N_mC_{\alpha}), \phi(N_mC_{\alpha}C_{\beta})$	
526 (3)	IPB(Py)	524 (6)	IPB(Py)	
614 (11)	$\phi(C_{\alpha}N_{m}C_{\alpha}), \phi(N_{m}C_{\alpha}C_{\beta})$	608 (33)	$\phi(C_{\alpha}N_{m}C_{\alpha}), \phi(N_{m}C_{\alpha}C_{\beta})$	
690 (421)	$\phi(N_pC_aC_\beta), \phi(N_mC_aC_\beta)$	691 (289)	$\phi(N_pC_\alpha C_\beta), \phi(N_mC_\alpha C_\beta)$	
748 (83)	$r(S-N_t),\phi(C_{\alpha}N_mC_{\alpha})$	763 (38)	$r(S-N_t),\phi(C_{\alpha}N_mC_{\alpha})$	
764 (124)	$r(S-N_t), \phi(C_{\alpha}N_mC_{\alpha}), \phi(C_{\alpha}C_{\beta}N_t)$	785 (80)	$f(S-N_t), \phi(C_{\alpha}N_mC_{\alpha}), \phi(C_{\alpha}C_{\beta}N_t)$	
830 (17)	IPB(Py+TD)	833 (27)	IPB(Py+TD)	
881 (21)	bre(Py+TD), IPR(Py)	876 (46)	bre(Py+TD), IPR(Py)	
1083 (175)	$r(N_p-C_\alpha), \phi(N_pC_\alpha C_\beta)$	1079 (3)	$r(N_p-C_\alpha), \phi(N_pC_\alpha C_\beta)$	
1115 (390)	$r(C_{\alpha}-C_{\beta}), r(C_{\alpha}-N_{m}), \phi(N_{p}C_{\alpha}C_{\beta}),$	1109	$r(C_{\alpha}-C_{\beta}), r(C_{\alpha}-N_{m}), \phi(N_{p}C_{\alpha}C_{\beta}),$	
	$r(C_{\beta}-N_{t})$	(452)	$r(C_{\beta}-N_{t})$	
1278 (726)	$\varphi(N_m C_\alpha C_\beta), \varphi(C_\alpha N_m C_\alpha)$	1279	$\phi(N_m C_\alpha C_\beta), \phi(C_\alpha N_m C_\alpha)$	
		(526)		
1315 (4)	$r(N_p-C_{\alpha}), \phi(C_{\alpha}N_mC_{\alpha}), \phi(N_mC_{\alpha}C_{\beta})$	1325 (44)	$r(N_{p}-C_{\alpha}), \phi(C_{\alpha}N_{m}C_{\alpha}), \phi(N_{m}C_{\alpha}C_{\beta}),$	
			$r(C_{\alpha}-C_{\beta}), \phi(N_pC_{\alpha}C_{\beta})$	
1415 (4)	$\phi(N_mC_{\alpha}C_{\beta}), r(C_{\beta}-N_t), r(C_{\alpha}-N_m),$	1432 (0)	$\phi(N_mC_{\alpha}C_{\beta}), r(C_{\beta}-N_t), r(C_{\alpha}-N_m),$	
	$\phi(N_pC_{\alpha}C_{\beta})$		$\phi(N_pC_{\alpha}C_{\beta})$	
1496 (51)	$r(C_{\beta}-N_t), r(C_{\alpha}-N_m), r(C_{\alpha}-C_{\beta}),$	1505 (1)	$r(C_{\beta}-N_t), r(C_{\alpha}-N_m), r(C_{\alpha}-C_{\beta}),$	
	$\phi(N_pC_{\alpha}C_{\beta})$		$\phi(N_pC_{\alpha}C_{\beta})$	
1530 (59)	$r(C_{\alpha}-N_m), \phi(N_pC_{\alpha}C_{\beta})$	1537 (13)	$r(C_{\alpha}-N_m), \phi(N_pC_{\alpha}C_{\beta})$	
1575 (83)	$r(C_{\beta}-N_{t}), r(C_{\alpha}-C_{\beta})$	1572 (65)	$r(C_{\beta}-N_{t}), r(C_{\alpha}-C_{\beta})$	

dom. – doming; fold (X-Y) – folding along X-Y line; OPB - out-of-plane bending, IPR – inplane rocking; Py – pyrrole ring; TD – thiadiazole ring; r – bond stretching; φ - angle bending; IPB – in-plane bending; bre – breathing

Table S10. Calculated frequencies of normal vibrations infrared inactive vibrational modes for anion [TTDPaLi]⁻ and [μ -(TTDPa)Li]₂.

TTDPzLi	TTDPzLi ₂	TTDPzLi	TTDPzLi ₂	TTDPzLi	TTDPzLi ₂
Symme	etry A _{1g}	Symme	etry B _{1g}	Symme	etry A _{2g}
230	232	142	121	234	236
586	542	582	582	615	622
713	590	733	731	680	687
769	714	768	787	787	800
855	788	844	843	1147	1135
1255	853	1271	1248	1201	1181
1346	1272	1337	1364	1496	1525
1472	1346	1460	1458	1569	1562
1542	1473	1588	1604		
	1562				
Symme	etry B _{2g}	Symmetry E _g		Symmetry B _{2u}	
111	117	59	40 <i>i</i> ^a	16	15
210	228	145	86	142	133
507	512	259	143	273	266
757	771	317	265	508	518
922	927	509	312	726	732
1029	1030	616	519		
1217	1199	755	617		
1460	1470	822	761		
1578	1574		823		
Symme	Symmetry A ₁₀		etry B _{1u}		
152	148	61	55		
540	542	275	274		
823	823	686	685		
		819	820		

^a imaginary value

	Total energy, Ha	HOMO, eV	LUMO, eV
[TTDPaLi ₂]	-3093.1708496553	-5.867	-3.679
(D_{4h})			
(C _{2h})	-3093.1708629450		
[TTDPaLi] ⁻	-3085,5706669461	-2.865	-0.514
H[TTDPaLi]	-3086,1986341181	-5.965	-3.831/ -3.570
[TTDPaHLi]	-3086,1729795300	-6.038	-3.946/ -3.761
[TTDPa] ²⁻	-3078,0230506409	0.302	2.746
[TTDPaH] ⁻	-3078,6621584073	-2.912	-0.688/ -0.473
{H[TTDPa]}	-3078,6222830330	-2.767	-0.558/ -0.294
[TTDPaH ₂]	-3079,1691980653	-6.144	-4.006/ -3.780

Table S11. Total energies (in Hartree) and frontier MO levels (in eV) for the optimized structures of TTDPa macrocycle its Li complex and their anionic forms.

Figure S1. MO level diagram for the optimized structures of [TTDPa]²- and its mono- and dilithium complexes

Figure S2. Cyclovoltammogramm of [TTDPaLi]⁻(Li⁺) in DMSO in the presence of 0.1 M tbaClO₄. Scan rate 100 mV/s.