Electronic Supporting Information

Synthesis, structures and cytotoxic effects *in vitro* of *cis*- and *trans*-[Pt^{IV}Cl₄(NHC)₂] complexes and their Pt^{II} precursors

Tobias Rehm,^a Matthias Rothemund,^a Thomas Dietel,^b Rhett Kempe^b and Rainer Schobert^a

^aOrganic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany. E-mail: Rainer.Schobert@uni-bayreuth.de

^bLehrstuhl fuer Anorganische Chemie II, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.

Table of content

Single crystal X-ray diffraction data of complexes 2c and 3 (Table S1)	S2
NMR spectra of complexes 2a-d, trans-2c, 3, 4a-d and trans-4c (Fig. S1-S30)	S3–S17
Oxidation of complex 2b with NaOCI	S18–S21
Stability of complex 4b in DMSO / water	S22–S24
Confirmative MTT-assays with 2c / 2d (Table S2)	S25

Table S 1: Single crystal X-ray diffraction data of platinum carbene complexes 2c and 3.

Crystal data	2c	3
Chemical formula	$C_{30}H_{44}CI_2N_4Pt\cdot CHCI_3$	$C_{34}H_{32}Cl_4N_4Pt \cdot 2(CH_2Cl_2)$
Mr	846.07	983.87
Crystal system, space group	Triclinic, P	Monoclinic, C2/c
Temperature (K)	133	133
a, b, c (Å)	8.6162 (17), 12.200 (2), 17.892 (4)	24.684 (5), 8.277 (5), 22.505 (5)
α, β, γ (°)	104.49 (3), 95.13 (3), 104.88 (3)	121.662 (5)
V (Å ³)	1736.1 (7)	3914 (3)
Z	2	4
<i>F</i> (000)	842.5	1945
D_x (Mg m ⁻³)	1.618	1.670
Radiation type	Μο Κα	Μο Κα
No. of reflections for cell measurement	1222	8743
$\boldsymbol{\theta}$ range (°) for cell measurement	5.7–25.8	1.9–28.3
μ (mm ⁻¹)	4.45	3.81
Crystal shape	Block	Block
Colour	Clear colourless	Colourless
Crystal size (mm)	0.07 × 0.01 × 0.004	0.21 × 0.12 × 0.09
Data collection		
Diffractometer	STOE-STADIVARI	STOE-STADIVARI
Scan method	ω scans	ωscan
Absorption correction	Numerical	Numerical
		STOE-X-RED32
T_{\min}, T_{\max}	0.613, 0.733	0.841, 0.912
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	20838, 8234, 7605	10695, 3414, 2307
R _{int}	0.015	0.077
θ values (°)	θmax = 28.5, θmin = 1.8	θmax = 25.0, θmin = 2.0
$(\sin \theta/\lambda)_{max}$ (Å ⁻¹)	0.671	0.595
Range of <i>h</i> , <i>k</i> , <i>l</i>	h = −11 → 7	h = −29 → 29
	k = −16 → 16	k = −5 → 9
	I = −23 → 22	I = −26 → 22
Refinement		
Refinement on	F^2	F^2
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.038, 1.04	0.055, 0.163, 0.99
No. of reflections	8234	3414
No. of parameters	374	223
No. of restraints	0	18
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma 2(Fo2) + (0.0198P)2 + 0.8853P]$	$w = 1/[\sigma 2(Fo2) + (0.1072P)2]$
	where $P = (Fo2 + 2Fc2)/3$	where $P = (Fo2 + 2Fc2)/3$
$(\Delta/\sigma)_{max}$	< 0.001	< 0.001
$\Delta \rho_{max}, \Delta \rho_{min} \; (e \; {\hat A}^{-3})$	0.62, -0.54	2.14, -2.78

Fig. S 1: ¹H-NMR spectrum (500 MHz, DMSO- d_6) of complex 2a.

Fig. S 2: 13 C-NMR spectrum (126 MHz, CDCl₃) of complex 2a.

Fig. S 3: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 2a.

Fig. S 4: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 2b.

Fig. S 5: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 2b.

Fig. S 6: $^{195}\mbox{Pt-NMR}$ spectrum (108 MHz, CDCl3) of complex 2b.

Fig. S 7: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 2c.

Fig. S 8: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 2c.

Fig. S 9: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 2c.

Fig. S 10: 1 H-NMR spectrum (500 MHz, CDCl₃) of complex 2d.

Fig. S 12: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 2d.

Fig. S 13: ¹H-NMR spectrum (500 MHz, DMSO- d_6) of complex **3**.

Fig. S 14: ¹³C-NMR spectrum (126 MHz, DMSO- d_6) of complex 3.

Fig. S 15: ¹⁹⁵Pt-NMR spectrum (108 MHz, DMSO- d_6) of complex 3.

Fig. S 16: 1 H-NMR spectrum (500 MHz, CDCl₃) of complex 4b.

Fig. S 17: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 4b.

Fig. S 18: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 4b.

Fig. S 19: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 4c.

Fig. S 20: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex 4c.

Fig. S 21: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 4c.

Fig. S 22: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex 4d.

Fig. S 24: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex 4d.

Fig. S 25: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex *trans*-2c.

Fig. S 26: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex *trans*-2c.

Fig. S 27: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex *trans*-2c.

Fig. S 28: ¹H-NMR spectrum (500 MHz, CDCl₃) of complex *trans*-4c.

Fig. S 29: ¹³C-NMR spectrum (126 MHz, CDCl₃) of complex *trans*-4c.

Fig. S 30: ¹⁹⁵Pt-NMR spectrum (108 MHz, CDCl₃) of complex *trans-*4c.

Oxidation of complex 2b with NaOCI

Pt^{IV} hydroxo complexes with NHC ligands have not been published yet.

Upon treating benzylated complex **1** with H_2O_2 , a new ¹⁹⁵Pt NMR signal around -855 ppm (CDCl₃) arose but the reaction was never completed and at the same time accompanied by decomposition due to cleavage of the benzyl group forming benzoic acid.

 H_2O_2 oxidation of the *N*-alkylated benzimidazole-2-ylidene complexes **2** afforded only starting material even with a vast excess of peroxide (H_2O_2 or ^tBuOOH) at elevated temperatures.

By treating **2b** with NaOCI in water/acetonitrile a new compound with a ¹⁹⁵Pt NMR signal at about -905 ppm (CDCI₃) appeared, but like before, neither did the reaction go to completion nor was it possible to separate any products from residual starting materials.

In one such run, crystals of a reaction product precipitated from $CDCI_3$ in the NMR tube. NMR spectra of freshly prepared solutions of these crystals in $DMSO-d_6$ were in agreement with the tentative structure **8** although alternative structures cannot be excluded with certainty. The same sample five days later showed only signals of pure starting Pt^{II} complex **2b**.

Fig. S 31 red: ¹H NMR (DMSO-*d*₆) of purported Pt^{IV} hydroxo complex **8** with characteristic signals of individual N-CH₂ protons between 3.5 and 6.0 ppm caused by inequivalent axial ligands; **green**: same sample five days later shows spectrum of starting Pt^{II} complex **2b**.

Fig. S 33 HMBC-Spectrum of compound 8 in DMSO-d₆

Fig. S 34 HSQC-Spectrum of compound 8 in DMSO-d₆

Fig. S 35 JMOD-Spectrum of compound 8 in DMSO-d₆

Fig. S 36 ¹⁹⁵Pt-Spectrum of compound 8 in DMSO-d₆

Stability of complex 4b in DMSO / water

UV/vis spectra (Fig. S 37): were recorded of 2 mL of a 25 µM solution of complex **4b** (from a 5 mM stock solution in DMSO) in water/DMSO (4:1) over a period of 24 h (every 5 min for the first 3 h) by means of a Cary 60 UV-Vis Spectrometer (Agilent Technologies). Absorptions are relative to a baseline set to 0 at 400 nm.

HPLC–ESI mass spectra: were recorded on a Varian 1200 Quadrupole MS/MS spectrometer of diluted NMR solutions of complex **4b** in water / DMSO- d_6 (30:70) after 0 min, 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, and 16 h. The area of the total ion current (TIC) filtered for the main decomposition species with m/z = 579 was calculated for each of these points in time.

Exemplary MS after 10 min:

- 1. Top in red: TIC = Total Ion Current from 0-3.2 min;
- 2. Middle in green: peak m/z = 579 integrated from 0-3.2 min to give an area of 9.641×10^9
- 3. Bottom: spectrum 1A, pertinent to TIC from 0-3.2 min.

Exemplary MS after 16 h:

Fig. S 39:1. Top in red: TIC = Total Ion Current from 0-3.2 min;2. Middle in green: peak m/z = 579 integrated from 0-3.2 min to give an area of 2.533×10^{10} 3. Bottom: spectrum 1A, pertinent to TIC from 0-3.2 min.

Integration of peak m/z = 579 in spectra from 0-3.2 min recorded over time:

Time	Area
0 min	5.35 × 10 ⁹
5 min	8.6 × 10 ⁹
10 min	9.64 × 10 ⁹
15 min	1.08 × 10 ¹⁰
30 min	1.26 × 10 ¹⁰
1 h	1.42 × 10 ¹⁰
2 h	1.8 × 10 ¹⁰
16 h	2.53 × 10 ¹⁰

Confirmative MTT-assays with compounds 2c and 2d: were carried out with cells of the same lines yet of *distinctly different* passage numbers:

Table S 2: Means \pm SD of IC₅₀ (72 h) values [μ M] of complexes **2c** and **2d** in MTT assays against human cancer cell lines^a as calculated from four independent measurements

compounds	IC ₅₀ (72h) [μM]	
	2c ^{10b}	2d
^a 518A2	2.1 ± 0.3	> 50
^a HT29	10.8 ± 1.0	> 50
^a DLD-1	17.4 ± 1.0	> 50
^a HCT116 ^{wt}	7.0 ± 0.8	> 50
^a HCT116 ^{-/-}	5.3 ± 0.2	> 50

^a518A2 – melanoma, HT-29 – colon adenocarcinoma, DLD-1 – Dukes type C colorectal adenocarcinoma, HCT116^{wt} – colon carcinoma (wildtype); HCT116^{-/-} – colon carcinoma (p53 knock-out mutant).