Supporting Information

Construction of Homochiral Alkaline-lanthanide Heteronuclear

Helicates with Na⁺-selective Bonding in Self-assembly Process

Ge Li,^a Li Wang,^b Qingxin Han,^c Weisheng Liu^{*a}

a. Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R.China

b. College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, P.R. China

c. College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

E/mail: <u>liuws@lzu.edu.cn</u>

Synthesis of the ligand

Scheme S1. Preparation of ligand H_2L^1 .

Methyl mandelate (1).

Mandelic acid (9.0 g, 0.059 mol) was dissolved in methanol (200 ml) and was slowly added with concentrated sulfuric acid (1.5 ml). After the reaction, adjusted pH = 7-8 with saturated aqueous NaHCO₃ solution, and extracted with ethyl acetate. The organic phase solvent was removed in vacuo and placed in freezer to give a white solid **1**. (9.5 g, yield 97%).

2-hydroxy-2-phenylacetohydrazide (2)

Methyl mandelate (9.5 g, 0.057 mol) was dissolved in methanol (200 ml) and added with N_2H_4 · H_2O (3.7 g). After refluxed for 12 hours, the solvent was removed in vacuo and obtain a white solid **2**. (9.4 g, yield 98%).

Ligand H_2L^1

2-hydroxy-2-phenylacetohydrazide (9.4 g, 0.056 mol) was dissolved in 200 ml methanol and added with 2-hydroxy-3-methoxybenzaldehyde (8.6 g, 0.057 mol). The solution was refluxed for 12 h and removed the solvent in vacuo to obtain a yellow powder (15 g, yield 94.6%).

Ligand H_2L^2

The synthesis of ligand $H_2 L^2$ was the same as $H_2 L^1$ except that

2-hydroxy-3-methoxybenzaldehyde was substituted for salicylaldehyde. $S-H_2L^1$

 $[\alpha]_{D}^{20} = -35 \text{ cm}^{3} \text{g}^{-1} \text{ dm}^{-1}(c = 0.002 \text{ g cm}^{-3}, \text{ methanol}). ^{1}\text{H-NMR}$ (400 MHz, CD₃OD) δ 8.50 (s, 1H), 7.54 – 7.46 (m, 2H), 7.38 – 7.27 (m, 3H), 7.07 (dd, J = 8.0, 1.5 Hz, 1H), 6.96 (dd, J = 8.1, 1.6 Hz, 1H), 6.81 (t, J = 8.0 Hz, 1H), 5.17 (s, 1H), 3.82 (s, 3H). 13 C-NMR (400 MHz, DMSO-D6) δ 56.19, 73.85, 114.12, 119.03, 119.41, 121.40, 127.02, 128.15, 128.67, 141.05, 147.42, 148.36, 149.26, 169.09. ESI-MS m/z: calcd. for C₁₆H₁₆N₂O₄ 300.1, found:301.1 [M+H]⁺.

R-H₂L¹

 $[\alpha]_{p}^{21} = +35 \text{ cm}^{3} \text{g}^{-1} \text{ dm}^{-1}(c = 0.002 \text{ g cm}^{-3}, \text{ methanol}). ^{1}\text{H-NMR}$ (400 MHz, CD₃OD) δ 8.51(s, 1H), 7.53-7.4(m, 3H), 7.3-7.28(m, 4H), 7.08(dd, J = 7.9, 1.5Hz, 1H), 6,98 (dd, J = 8.0, 1.4Hz, 1H), 5.17 (s, 1H), 3.83 (s, 3 H). ¹³C-NMR (400 MHz, DMSO-D6) δ 56.42, 73.91, 114.45, 119.24, 119.40, 121.53, 127.01, 128.16, 128.50, 141.07, 147.69, 148.40, 149.39, 169.10. ESI-MS m/z: calcd. for C₁₆H₁₆N₂O₄ 300.1, found:301.1 [M+H]⁺.

$S-H_2L^2$

 $[\alpha]_D{}^{21} = -40 \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}(c = 0.002 \text{ g cm}^{-3}, \text{ methanol}).^1\text{H-NMR}$ (400 MHz, CD₃OD) δ 8.45 (s, 1H), 7.61–7.43 (m, 2H), 7.39–7.20 (m, 5H), 6.86 (dtt, J = 7.9, 5.2, 2.6 Hz, 2H), 5.18 (s, 1H). ¹³C-NMR (400 MHz, CD₃OD) δ 73.76, 115.81, 117.70, 119.28, 125.73, 128.41, 129.99, 131.09, 139.52, 151.01, 157.55, 170.15. ESI-MS m/z: calcd. for C₁₅H₁₄N₂O₃ 270.1.1, found:271.1 [M+H]⁺

R-H₂L²

 $[\alpha]p^{21} = +40 \text{ cm}^3 \text{g}^{-1} \text{ dm}^{-1}(c = 0.002 \text{ g cm}^{-3}, \text{ methanol}).$ ¹H-NMR (400 MHz, CD₃OD) δ 8.46 (s, 1H), 7.54 – 7.43 (m, 3H), 7.43 – 7.20 (m, 8H), 6.92 – 6.79 (m, 3H), 5.18 (s, 1H). ¹³C-NMR (400 MHz, CD₃OD) δ 73.72, 116.18, 117.74, 119.15, 126.55, 127.78, 128.159, 130.43, 139.60, 151.02, 158.05, 170.24. ESI-MS m/z: calcd. for C₁₅H₁₄N₂O₃ 270.1.1, found:271.1 [M+H]⁺.

Synthesis of Complexes

$[Dy_2Na_3\{(S)-HL^1\}_6]\cdot 3NO_3\cdot solvent$ (1a)

(*S*)-H₂L¹(0.06 mmol, 0.0180g) was added into 1 ml methanol solution of NaOH (0.1 M) and added with 2 ml acetonitrile. After the mixture had been stirred for 3 min, 0.03 mmol Dy(NO₃)₃·6H₂O(0.0137 g) was added. Then, the solution was stirred for 3 min until obtain a clearly yellow solution. The crystals of complex **1a** suitable for single-crystal X-ray diffraction analysis were obtained 47% yield by slow evaporation of the solution with one week at room temperature in air. Elemental analysis for complex **1a** C₉₆H₉₀Dy₂N₁₅Na₃O₃₃ (non-coordinated solvent molecules were lost by drying): C, 47.68; H, 3.71; N, 8.60 (calculated: C, 48.48; H, 3.79; N, 8.83.) IR (KBr, *v*, cm⁻¹): 3199(m), 3028(w), 2835(w), 1604(s), 1541(m), 1454(s), 1380(s), 1296(m), 1218(s), 1082(m), 948(w), 848(m), 732(s), 694(m), 619(w).

 $[Dy_2Na_3\{(R)-HL^1\}_6]\cdot 3NO_3\cdot solvent (1b)$

The synthesis steps of enantiomer complex **1b** was the same procedure as that for complex **1a**, except that (*R*)-H₂L¹ instead of (*S*)-H₂L¹. The crystals of complex **1b** suitable for single-crystal X-ray diffraction analysis were obtained 45% yield by slow

evaporation of the solution with one week at room temperature in air. Elemental analysis for complex **1b** $C_{96}H_{90}Dy_2N_{15}Na_3O_{33}$ (non-coordinated solvent molecules were lost by drying): C, 47.78; H, 3.65; N, 8.71 (calculated: C, 48.48; H, 3.79; N, 8.83.) IR (KBr, v, cm⁻¹): 3446(w), 3033(w), 1602(s), 1546(w), 1448(s), 1380(s), 1296(m), 1082(m), 947(w), 852(w), 742(s), 694(w), 621(w).

 $[Dy_4(\mu_4-OH) \{(S)-HL^2\}_8] \cdot 3NO_3 \cdot MeOH \cdot 4H_2O(2a)$

The synthesis steps of complex **2a** was the same procedure as that for complex **1a**, except that (S)-H₂L² instead of (S)-H₂L¹. Elemental analysis for complex **2a** C₁₂₀H₁₀₅Dy₄N₁₉O₃₄ (non-coordinated solvent molecules were lost by drying): C, 46.65; H, 3.68; N, 8.69 (calculated: C, 47.58; H, 3.57; N, 8.79.) IR (KBr, v, cm⁻¹): 3296(m), 3037(w), 1631(s), 1604(s), 1544(m), 1471(m), 1438(m), 1379(s), 1319(w), 1284(s), 1199(m), 1155(w), 1066(w), 960(w), 896(m), 759(m), 732(m), 694(m), 586(w), 511(w).

 $[Dy_4(\mu_4-OH) \{(R)-HL^2\}_8] \cdot 3NO_3 \cdot 2CH_3CN \cdot 6H_2O(2b)$

The synthesis steps of complex **2b** was the same procedure as that for complex **1a**, except that (R)-H₂L² instead of (S)-H₂L¹. Elemental analysis for complex **2b** C₁₂₀H₁₀₅Dy₄N₁₉O₃₄ (non-coordinated solvent molecules were lost by drying): C, 46.81; H, 3.72; N, 8.73 (calculated: C, 47.58; H, 3.57; N, 8.79.) IR (KBr, v, cm⁻¹): 3290(m), 3031(w), 1641(s), 1608(s), 1544(m), 1471(m), 1438(m), 1380(s), 1319(w), 1284(s), 1197(w), 1149(w), 1060(w), 894(w), 757(m), 732(m), 694(w), 588(w), 511(w).

Mixed-metal Self-assembly Experiments

In this work, (*S*)-H₂L¹ was used as an example to illustrate the Na⁺-selective bonding in self-assembly process. (*S*)-H₂L¹(0.06 mmol, 0.0180g) dissolved in 3 ml acetonitrile was deprotonated by adding 2 ml methanol solution of KOH (0.1 M) and stirred for 3 min. After the ligand was completely dissolved, 0.03 mmol various metal ions (including Dy³⁺, Li⁺, Na⁺, Mg²⁺ and Ca²⁺, the lanthanide salt is nitrate and the other metal salts is perchlorate) was added, respectively. Then, the solution was stirred for 3 min until obtain a clearly yellow solution. The crystal of complex was obtained by slow evaporation of the solution about two weeks at room temperature in air.

Materials and Methods

All reagents and solvents were purchased from commercial sources and used without further purification. ¹H-NMR spectra were recorded on a JNM-ECS-400 MHz spectrometer and referenced to the solvent signals. The infrared spectra were obtained by a Burker VERTEX 70 FT-IR spectrometer using KBr pellets in the range from 400 cm⁻¹ to 4000 cm⁻¹. X-ray powder diffraction data of all samples were recorded on a PANalytical X'Pert Pro Diffractometer equipped with Cu K α radiation (λ =1.5406 Å) and operated at 40 kV and 40 mA with scanning ranges from 3° to 50°. The solution CD spectra were recorded on an Olis DSM 1000 spectropolarimeter. HRESI-MS were performed on Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

Crystal datas for all complexes were collected on a Bruker FRAMBO diffractometer (**1a** and **2a**: Mo K α radiation, $\lambda = 0.71073$ Å; **1b** and **2b**: Cu K α radiation, $\lambda = 1.5418$ Å). Data reduction was accomplished by the Bruker SAINT program. Structures were

solved by direct methods and refined by a full matrix least-squares technique based on F^2 using the Olex2 program. All non-hydrogen atoms were refined anisotropically. For **1a** and **1b**, due to the serious disorder of the solvent molecules, we removed the solvent molecules with SQUEEZE. The details of the crystal parameters, data collections and refinements are summarized in Table S1. Selected bond lengths and angles for all complexes are given in Table S2.

Figure S3 ¹³C-NMR (400 MHz, DMSO-d6) spectra of the (S)-H₂L¹.

 Table S1 Crystal Data and Structure Refinement Parameters for Complexes.

	Complex 1a	Complex 1b	Complex 2a	Complex 2b
Crystal System	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space Group	C2221	C2221	P212121	P212121
a (Å)	21.876(6)	20.2482(2)	16.4632(2)	16.5304(4)
b (Å)	20.204(5)	21.6632(2)	21.6760(4)	21.5083(5)
c (Å)	56.153(14)	55.8238(6)	34.7600(6)	34.7813(7)
α (°)	90	90	90	90
β (°)	90	90	90	90
γ (°)	90	90	90	90
Z	8	4	4	4
Volume (Å 3)	24819(11)	24486.6(4)	12404.3(4)	12366.2(5)
$\rho_{calc} g/cm^3$	1.272	1.391	1.645	1.515
μ (mm ⁻¹)	1.279	7.271	2.471	13.327
F(000)	9600.0	10408.0	6116.0	5600.0
Temperature	296.15	120.15	100.00(10)	153.15
Reflections collected	61577	42501	85131	92228
Independent ref.	21795	22338	24435	20889
Data/restraints/parameters	21795/211/1340	22338/181/1544	24435/3181/1652	20889/2804/1494
R int	0.0537	0.0313	0.0573	0.0541
Flack parameter	0.071(13)	-0.0013(16)	-0.009(5)	0.049(4)
Final R indices	R1 = 0.0596,	R1 = 0.0461, wR2 =	$R_1 = 0.0582,$	$R_1 = 0.0360,$
[I>2.0σ(I)]	wR2 = 0.1323	0.1261	$wR_2 = 0.1479$	$wR_2 = 0.0929$
Final R indexes [all data]	R1 = 0.0640,	R1 = 0.0495, wR2 =	$R_1 = 0.0763,$	$R_1 = 0.0375,$
	wR2 = 0.1342	0.1284	$wR_2 = 0.1618$	$wR_2 = 0.0938$
GOF	1.098	1.065	1.041	1.021

Complex 1a									
Dy(1)-O(2)	2.312(7) N	Va(1)-O(7)	2.315(9)	Na(2)-O(3)1	2.290(8)	Na(4)-O(1	4)	2.323(9)
Dy(1)-O(1)	2.328(7) N	la(1)-O(2)	2.300(8)	Dy(2)-O(15)	2.322(8)	Na(4)-O(1	5)	2.544(9)
Dy(1)-O(3)	2.319(7) N	la(1)-O(1)1	2.297(9)	Dy(2)-O(23)	2.385(8)	Na(4)-O(1	5)2	2.309(9)
Dy(1)-O(8)	2.437(7) N	la(1)-O(1)	2.587(8)	Dy(2)-O(17)	2.427(9)	Na(4)-O(1	6)2	2.334(9)
Dy(1)-O(11)	2.371(8) N	la(1)-O(3)1	2.615(8)	Dy(2)-O(20)	2.404(8)	Na(3)-O(1	3)	3.109(1)
Dy(1)-O(5)	2.433(8) N	Va(2)-O(4)	2.321(9)	Dy(2)-N(9)	2.601(9)	Na(3)-O(1	3)2	2.316(9)
Dy(1)-N(3)	2.627(8) N	Va(2)-O(4)1	2.321(9)	Dy(2)-N(7)	2.599(1)	Na(3)-O(2	22)2	2.316(9)
Dy(1)-N(1)	2.584(10) N	Va(2)-O(2)	2.589(8)	Dy(2)-N(11)	2.594(9)	Na(3)O(22	2)	2.339(1)
Dy(1)-N(5)	2.604(9) N	Va(2)-O(2)1	2.589(8)	Na(4)-O(19)	2.330(9)	Na(3)-O(1	4)2	2.339(1)
Na(1)-O(10)1	2.333(8) N	la(2)-O(3)	2.290(8)	Na(4)-O(13)2	2.581(9)	Na(3)-O(1	4)	2.537(9)
Dy(2)-O(13)	3.105(11) D	D y(2)-O(14)	2.308(8)					
O(2)-Dy(1)-C	0(1)	80.8(2)	O(13)-Dy	v(2)-O(23)	130.7(3)	N(5)-Dy(1))-N(3)	119.1	(3)
O(2)-Dy(1)-C) (3)	81.3(3)	O(13)-Dy	v(2)-O(17)	141.5(3)	O(10)1-Na	(1) - O(1)	90.7(3)
O(2)-Dy(1)-C	0(8)	129.3(3) O(13)-Dy	/(2)-O(20)	83.0(3)	O(10)1-Na	(1)-O(3)1	129.8	3(3)
O(2)-Dy(1)-C	0(11)	80.6(3)	O(13)-Dy	/(2)-N(9)	75.2(3)	O(10)1-Na	(1)-C(17)	141.9	9(3)
O(2)-Dy(1)-C	0(5)	140.9(3) O(13)-Dy	/(2)-N(7)	141.0(3)	O(10)1-Na	(1)-C(33)1	48.9(3)
O(2)-Dy(1)-N	I(3)	67.3(3)	O(13)-Dy	/(2)-N(11)	68.4(3)	O(7)-Na(1)	-O(10)1	97.6(3)
O(2)-Dy(1)-N	I(1)	142.1(3	b) O(14)-Dy	v(2)-O(13)	79.5(3)	O(7)-Na(1)	-O(1)	127.4	4(3)
O(2)-Dy(1)-N	l(5)	73.8(3)	O(14)-Dy	v(2)-O(15)	80.2(3)	O(7)-Na(1)	-O(3)1	92.9(3)
O(1)-Dy(1)-C	0(8)	142.6(3) O(14)-Dy	v(2)-O(23)	141.6(3)	O(2)-Na(1)	-O(10)1	149.0)(3)
O(1)-Dy(1)-C	0(11)	129.3(3	b) O(14)-Dy	v(2)-O(17)	83.2(3)	O(2)-Na(1)	-O(7)	70.9(3)
O(1)-Dy(1)-C	0(5)	81.2(3)	O(14)-Dy	v(2)-O(20)	130.2(3)	O(2)-Na(1)	-O(1)	75.7(3)
O(1)-Dy(1)-N	I(3)	141.7(3	b) O(14)-Dy	v(2)-N(9)	68.7(3)	O(2)-Na(1)	-O(3)1	80.4(3)
O(1)-Dy(1)-N	I(1)	74.3(3)	O(14)-Dy	v(2)-N(7)	74.2(3)	O(2)-Na(1)	-C(17)	23.2(3)
O(1)-Dy(1)-N	I(5)	67.9(3)	O(14)-Dy	v(2)-N(11)	141.8(3)	O(2)-Na(1)	-C(33)1	147.6	5(3)
O(3)-Dy(1)-C	0(1)	81.6(3)	O(15)-Dy	v(2)-O(13)	80.4(3)	O(1)1-Na(1)-O(10)1	70.6(3)
O(3)-Dy(1)-C	0(8)	82.1(3)	O(15)-Dy	/(2)-O(23)	82.6(3)	O(1)1-Na(1)-O(7)	150.0)(3)
O(3)-Dy(1)-C	0(11)	140.3(3) O(15)-Dy	/(2)-O(17)	130.0(3)	O(1)1-Na(1)-O(2)	132.3	3(3)
O(3)-Dy(1)-C	0(5)	129.5(3) O(15)-Dy	/(2)-O(20)	141.5(3)	O(1)1-Na(1)-O(1)	81.3(3)
O(3)-Dy(1)-N	I(3)	73.4(3)	O(15)-Dy	v(2)-N(9)	143.2(3)	O(1)-Na(1)	-O(3)1	120.3	3(3)
O(3)-Dy(1)-N	I(1)	67.4(3)	O(15)-Dy	v(2)N(7)	67.3(3)	O(1)1-Na(1)-O(3)1	76.1(3)
O(3)-Dy(1)-N	l(5)	143.0(3) O(15)-Dy	/(2)-N(11)	74.8(3)	O(4)-Na(2)	-O(4)1	96.6(4)
O(8)-Dy(1)-N	I(3)	62.1(3)	O(23)-Dy	v(2)-O(17)	82.1(3)	O(4)1-Na(2	2)-O(2)1	129.4	4(3)
O(8)-Dy(1)-N	I(1)	68.4(3)	O(23)-Dy	/(2)-O(20)	82.4(3)	O(4)-Na(2)	-O(2)	129.4	4(3)
O(8)-Dy(1)-N	(5)	134.9(3) O(23)-Dy	/(2)-N(9)	134.2(3)	O(4)1-Na(2	2)-O(2)	91.7(2)
O(11-)Dy(1)-	O(8)	82.6(3)	O(23)-Dy	/(2)-N(7)	67.6(3)	O(4)-Na(2)	-O(2)1	91.7(2)
O(11)-Dy(1)-	O(5)	84.5(3)	O(23)-Dy	v(2)-N(11)	62.6(3)	O(2)1-Na(2	2)-O(2)	49.0(3)
O(11)-Dy(1)-	N(3)	67.1(2)	O(17)-Dy	v(2)-N(9)	66.5(3)	O(3)1-Na(2	2)-O(4)	97.2(3)

Table S2 Selected Bond Lengths (Å) and Angles (°) for All Complexes.

O(11)-Dy(1)	-N(1)	137.3(3)	O(17)-Dy	(2)-N(7)	62.8(3)	O(3)1-Na(2)-O(4)1	97.2(3)
O(11)-Dy(1)-	-N(5)	61.7(3)	O(17)-Dy	(2)-N(11)	134.9(3)	O(3)-Na(2)-O(4)1	77.9(3)
O(5)-Dy(1)-0	O(8)	83.7(2)	O(20)-Dy	(2)-O(17)	82.4(3)	O(3)-Na(2)-O(4)	77.9(3)
O(5)-Dy(1)-1	N(3)	137.1(3)	O(20)-Dy	(2)-N(9)	61.9(3)	O(3)-Na(2)-O(2)1	112.0(2)
O(5)-Dy(1)-1	N(1)	62.3(3)	O(20)-Dy	(2)-N(7)	135.9(3)	O(3)1-Na(2)-O(2)	112.0(2)
O(5)-Dy(1)-1	N(5)	67.3(3)	O(20)-Dy	(2)-N(11)	66.8(3)	O(3)1-Na(2)-O(2)1	37.52(18)
N(1)-Dy(1)-N	N(3)	119.6(3)	N(7)-Dy(2	2)-N(9)	119.2(3)	O(22)-Na(3)-O(14)	126.9(3)
N(1)-Dy(1)-N	N(5)	120.1(3)	N(11)-Dy	(2)-N(9)	119.2(3)	O(22)2-Na	a(3)-O(14)	92.5(3)
N(11)-Dy(2)-	-N(7)	119.9(3)	O(15)2-N	a(4)-O(13)2	75.5(3)	O(13)-Na(3)-O(22)	70.3(3)
O(19)-Na(4)-	-O(13)2	-92.2(3)	O(15)2-N	a(4)-O(14)	130.7(3)	O(13)-Na(3)-O(14)2	81.8(3)
O(19)-Na(4)	-O(15)	126.4(3)	O(15)2-Na	a(4)-O(15)	80.9(3)	O(13)2-Na	a(3)-O(14)	81.8(3)
O(19)-Na(4)-	-O(16)2	98.8(3)	O(15)2-N	a(4)-O(16)2	69.9(3)	O(13)-Na(3)-O(14)	75.2(3)
O(14)-Na(4)-	-O(19)	69.9(3)	O(16)2-N	a(4)-O(13)2	125.0(3)	O(13)2-Na	a(3)-O(14)2	75.2(3)
O(14)-Na(4)-	-O(13)2	80.8(3)	O(16)2-Na	a(4)-O(15)	94.1(3)	O(22)2-Na	a(3)-O(22)	98.1(5)
O(14)-Na(4)-	-O(15)	75.4(3)	O(13)-Na((3)-O(13)2	132.1(5)	O(22)-Na(3)-O(14)2	92.5(3)
O(14)-Na(4)-	-O(16)2	153.1(4)	O(13)-Na((3)-O(22)2	150.3(3)	O(22)2-Na	a(3)O(14)2	126.9(3)
O(15)2-Na(4	-)-O(19)	151.9(4)	O(13)2-N	a(3)-O(22)	150.3(3)	O(22)-Na(3)-O(14)	126.9(3)
O(15)-Na(4)	-0(13)2	121.2(3)	O(13)2-N	a(3)-O(22)2	70.3(3)	O(22)2-Na	n(3)-O(14)	92.5(3)
Na(2)-O(14)2	2.288(4) Dy(1)-O(5)	2.424(5)	Na(2)-O(14)	2.289(4)	Dy(1)-O(2)	2.312(4
Na(2)-O(14)2	2.288(4) Dy(1)-O(5)	2.424(5)	Na(2)-O(14)	2.289(4)	Dy(1)-O(6)	2.324(5
Dy(1)-O(9)	2.391(5) Na(2)-O(15)2	2.315(5)	Dy(1)-O(10)	2.300(4)	Na(2)-O(22	2.583(4
Dy(1)-N(2)	2.586(6) Na(2)-O(22)	2.583(4)	Dy(1)-N(4)	2.595(6)	Dy(1)-N(6)	2.591(7
Na(1)-Na(4)	3.422(4) Na(3)-O(14)	2.607(5)	Na(1)-O(2)	2.583(5)	Na(3)-O(18	3) 2.304(5
Na(1)-O(6)1	2.528(5) Na(3)-O(18)2	2.584(5)	Na(1)-O(6)	2.311(5)	Na(3)-O(19) 2.320(5
Na(1)-O(7)	2.355(6) Na(3)-O(22)	2.283(5)	Na(1)-O(10)	2.328(5)	Na(3)-O(23	6) 2.327(5
Na(1)-O(11)1	2.352(5) Na(4)-O(2)1	2.306(5)	Na(4)-O(2)	2.306(5)	Na(4)-O(3)	1 2.342(5
Na(4)-O(3)	2.342(5) Na(4)-O(10)1	2.545(5)	Dy(2)-O(13)	2.425(4)	Dy(2)-O(14) 2.307(4
Dy(2)-O(17)	2.379(5) Dy(2)-O(18)	2.302(4)	Dy(2)-O(21)	2.432(4)	Dy(2)-O(22	2)2 2.323(4
Dy(2)-N(8)	2.591(6)						
D(17)-Dy(2)-O((13) 8	4.47(16)	O(17)-Dy(2)-O(21)2	82.37(16)	O(17)	-Dy(2)-N(8)	137.30(17
D(17)-Dy(2)-N((10) 6	2.27(17)	O(1)-Dy(1)-O(5)	82.10(17)	O(17)	-Dy(2)-N(12)	2 67.53(16)
D(1)-Dy(1)-O(9) 8	3.02(17)	O(1)-Dy(1)-N(2)	62.94(17)	O(1)-I	Dy(1)-N(4)	67.91(17)
D(1)-Dy(1)-N(6	5) 1	35.15(18	O(18)-Dy(2)-O(13)	81.40(16)	O(18)	-Dy(2)-O(14)	81.72(15)
D(18)-Dy(2)-O((17) 1	29.64(16	O(18)-Dy(2)-O(21)2	142.58(16)	O(2)-I	Dy(1)-O(1)	130.67(10
D(18)-Dy(2)-O((22) 8	0.73(15)	O(2)-Dy(1)-O(5)	141.55(17)	O(18)	-Dy(2)-N(8)	74.09(17)
D(2)-Dy(1)-O(6	5) 8	0.73(17)	O(18)-Dy(2)-N(10)	67.61(18)	O(2)-I	Dy(1)-O(9)	82.49(17)
D(18)-Dy(2)-N((12) 1	40.88(17	O(2)-Dy(1)-N(2)	67.96(17)	O(2)-I	Dy(1)-N(4)	141.42(18
D(2)-Dy(1)-N(6	5) 7	4.34(18)	O(21)2-Dy	/(2)-N(8)	68.58(17)	O(21)	2-Dy(2)-N(10)) 135.56(18
D(21)2-Dy(2)-N	N(12 6	2.42(17)	O(5)-Dy(1)-N(2)	135.37(18)	O(5)-I	Dy(1)-N(4)	61.91(18)

O(5)-Dy(1)-N(6)	67.37(18)	O(6) -Dy(1)-Na(1)	37.08(12)	O(22)2-Dy(2)-O(13)	141.21(15
O(22)2-Dy(2)-O(17	80.96(15)	O(22)2-Dy(2)-O(21)2	129.09(15)	O(6-Dy(1)-O(1))	82.16(17)
O(22)2-Dy(2)-N(8)	141.71(16	O(6)-Dy(1)-O(5)	129.68(17)	O(22)2-Dy(2)-N(10)	73.59(16)
D(6)-Dy(1)-O(9)	141.51(17	O(22)2-Dy(2)-N(12)2	66.74(16)	O(6)-Dy(1)-N(2)	74.53(18)
D(6)-Dy(1)-N(4)	67.85(18)	O(6)-Dy(1)-N(6)	142.67(18)	O(9)-Dy(1)-O(5)	82.71(17)
O(9)-Dy(1)-N(2)	67.09(18)	O(9)-Dy(1)-N(4)	136.09(18)	O(9)-Dy(1)-N(6)	61.88(18)
O(10)-Dy(1)-O(2)	79.59(17)	O(10)-Dy(1)-O(5)	83.31(17)	O(10)-Dy(1)-O(6)	80.10(16)
O(10-Dy(1)-O(9)	130.11(17	O(10)-Dy(1)-N(2)	141.30(18)	O(14)2-Na(2)-Dy(2)	111.75(14
O(10)-Dy(1)-N(4)	73.61(18)	O(10)-Dy(1)-N(6)	68.51(17)	N(2)-Dy(1)-N(4)	120.76(19
N(2)-Dy(1)-N(6)	119.03(18	O(14)2-Na(2)-O(14)	133.1(2)	O(14)2-Na(2)-O(15)	71.03(14)
O(14)-Na(2)-O(15)	148.48(17	O(14)2-Na(2)-O(15)	148.48(17)	O(14)-Na(2)-O(15)	71.03(14)
O(14)-Na(2)-O(22)	80.78(15)	N(6)-Dy(1)-N(4)	118.77(19)	O(14)-Na(2)-O(22)2	76.21(14)
O(14)2-Na(2)-O(22	80.78(15)	O(14)2-Na(2)-O(22)	76.21(14)	O(15)2-Na(2)-O(15)	97.0(2)
O(15)-Na(2)-O(22)	91.46(14)	O(15)-Na(2)-O(22)2	129.67(15)	O(15)2-Na(2)-O(22)	91.47(14)
O(6)-Na(1)-O(2)	75.46(16)	O(15)2-Na(2)-O(22)	129.67(15)	O(6)1-Na(1)-O(2)	120.80(17
O(6)-Na(1)-O(6)1	80.75(19)	O(6)-Na(1)-O(7)	69.61(18)	O(6)-Na(1)-O(10)1	130.2(2)
O(7)-Na(1)-O(2)	125.4(2)	O(7)-Na(1)-O(6)1	93.57(19)	O(22)2-Na(2)-O(22)	119.9(2)
O(10)-1Na(1)-O(2)	80.32(17)	O(10)1-Na(1)O(6)1	75.45(17)	O(10)1-Na(1)-O(7)	153.4(2)
D(10)1-Na(1)-O(11)	69.79(18)	O(11)1-Na(1)-O(2)	93.11(18)	O(11)1-Na(1)-O(6)1	125.7(2)
O(11)1-Na(1)-O(7)	99.3(2)	O(2)1-Na(4)-O(2)	131.1(3)	O(2)1-Na(4)-O(3)1	70.54(17)
O(2)-Na(4)-O(3)	70.54(17)	O(2) -Na(4)-O(3)1	150.92(19)	O(2)1-Na(4)-O(3)	150.92(19
O(2)1-Na(4)-O(10)	74.77(16)	O(2)-Na(4)-O(10)	74.78(16)	O(18)-Na(3)-O(14)	75.46(15)
O(2)-Na(4)-O(10)1	81.53(17)	O(18)2-Na(3)-O(14)	120.10(16)	O(2)1-Na(4)-O(10)	81.52(17)
O(18)-Na(3)-O(18)	81.70(19)	O(18)-Na(3)-O(19)	70.97(17)	O(18)-Na(3)-O(23)	149.7(2)
O(19)-Na(3)-O(14)	129.59(19	O(19)-Na(3)-O(18)2	91.07(17)	O(3)-Na(4)-O(3)1	98.4(3)
O(19)-Na(3)-O(23)	97.32(19)	O(3)-Na(4)-O(10)1	92.80(17)	O(3)1-Na(4)-O(10)1	126.75(17
O(3)-Na(4)-O(10)	126.75(17	O(3)1-Na(4)-O(10)	92.80(17)	O(22)-Na(3)-Dy(2)	110.75(13
O(22-Na(3)-O(18)	132.12(19	O(22)-Na(3)-O(18)2	75.70(15)	O(22)-Na(3)-O(19)	149.3(2)
O(22)-Na(3)-O(23)	71.02(17)	O(23)-Na(3)-O(14)	93.19(17)	O(23)-Na(3)-O(18)2	127.3(2)
O(13)-Dy(2)-O(21)	83.69(16)	O(13)-Dy(2)-N(8)	62.48(16)	O(13)-Dy(2)-N(10)	67.81(17)
O(13)-Dy(2)-N(12)	137.71(17	O(14)-Dy(2)-O(13)	129.41(15)	O(14)-Dy(2)-O(17)	140.14(14
O(14)-Dy(2)-O(21)	81.70(15)	O(14)-Dy(2)-O(22)2	81.28(15)	O(14)-Dy(2)-N(8)	67.07(15)
O(14)-Dv(2)-N(10)	142.75(17	O(14)- $Dv(2)$ - $N(12)$ 2	72.69(16)		. ,

Complex 2a							
Dy(2)-O(17)	2.304(10)	Dy(4)-O(8)	2.324(10)	Dy(1)-O(20)	2.403(9)	Dy(3)-O(15)	2.384(10)
Dy(2)-O(20)	2.318(10)	Dy(4)-O(9)	2.438(10)	Dy(1)-O(24)	2.402(10)	Dy(3)-O(8)	2.362(10)
Dy(2)-O(14)	2.393(10)	Dy(4)-O(11)	2.359(10)	Dy(1)-O(3)	2.403(9)	Dy(3)-O(17)	2.398(10)
Dy(2)-O(1)	2.481(9)	Dy(4)-O(1)	2.515(9)	Dy(1)-O(1)	2.545(9)	Dy(3)-O(11)	2.325(9)
Dy(2)-N(13)	2.598(12)	Dy(4)-O(5)	2.310(9)	Dy(1)-O(5)	2.385(9)	Dy(3)-O(14)	2.321(9)
Dy(2)-O(23)	2.403(10)	Dy(4)-O(2)	2.428(10)	Dy(1)-N(15)	2.644(11)	Dy(3)-O(1)	2.521(9)
Dy(2)-O(18)	2.416(10)	Dy(4)-O(6)	2.395(10)	Dy(1)-N(1)	2.647(11)	Dy(3)-O(12)	2.459(10)
Dy(2)-O(21)	2.408(11)	Dy(4)-N(4)	2.601(10)	Dy(1)-O(23)	2.316(10)	Dy(3)-N(9)	2.676(11)
Dy(2)-N(11)	2.633(12)	Dy(4)-N(5)	2.606(12)	Dy(1)-O(2)	2.301(10)	Dy(3)-N(7)	2.630(12)

O(17)-Dy(2)-O(20)	138.3(3)	O(20)-Dy(2)-O(21)	125.6(3)	O(23)-Dy(2)-O(18)	144.1(3)
O(17)-Dy(2)-O(14)	77.5(3)	O(20)-Dy(2)-N(11)	148.1(4)	O(23)-Dy(2)-O(21)	75.2(3)
O(17)-Dy(2)-O(1)	68.8(3)	O(14)-Dy(2)-O(1)	66.5(3)	O(23)-Dy(2)-N(11)	133.7(4)
O(17)-Dy(2)-N(13)	146.0(4)	O(14)-Dy(2)-N(13)	133.4(4)	O(18)-Dy(2)-O(1)	134.3(3)
O(17)-Dy(2)-O(23)	87.5(3)	O(14)-Dy(2)-O(23)	133.7(3)	O(18)-Dy(2)-N(13)	65.7(4)
O(17)-Dy(2)-O(18)	125.0(3)	O(14)-Dy(2)-O(18)	74.4(3)	O(18)-Dy(2)-N(11)	62.1(4)
O(17)-Dy(2)-O(21)	84.1(3)	O(14)-Dy(2)-O(21)	143.9(3)	O(21)-Dy(2)-O(1)	133.7(3)
O(17)-Dy(2)-N(11)	67.0(4)	O(14)-Dy(2)-N(11)	79.6(3)	O(21)-Dy(2)-N(13)	62.5(4)
O(20)-Dy(2)-O(14)	87.4(3)	O(1)-Dy(2)-N(13)	130.4(3)	O(21)-Dy(2)-O(18)	91.9(3)
O(20)-Dy(2)-O(1)	69.6(3)	O(1)-Dy(2)-N(11)	128.6(3)	O(21)-Dy(2)-N(11)	64.6(4)
O(20)-Dy(2)-N(13)	67.6(4)	N(13)-Dy(2)-N(11)	101.0(4)	O(8)Dy(4)-O(9)	124.7(3)
O(20)-Dy(2)-O(23)	75.2(4)	O(23)-Dy(2)-O(1)	67.2(3)	O(8)-Dy(4)O(11)	76.6(4)
O(20)-Dy(2)-O(18)	86.4(3)	O(23)-Dy(2)-N(13)	78.7(3)	O(8)-Dy(4)-O(1)	67.9(3)
O(8)-Dy(4)-O(2)	86.3(3)	O(11)-Dy(4)-N(5)	78.6(4)	O(2)-Dy(4)-O(1)	66.4(3)
O(8)-Dy(4)-O(6)	86.5(4)	O(1)-Dy(4)-N(4)	131.2(3)	O(2)-Dy(4)-N(4)	82.5(3)
O(8)-Dy(4)-N(4)	149.1(4)	O(1)-Dy(4)-N(5)	127.2(3)	O(2)-Dy(4)-N(5)	133.2(4)
O(8)-Dy(4)-N(5)	66.3(4)	O(5)-Dy(4)-O(8)	137.2(3)	O(6)-Dy(4)-O(9)	91.2(4)
O(9)-Dy(4)-O(1)	134.2(3)	O(5)-Dy(4)-O(9)	86.7(3)	O(6)-Dy(4)-O(1)	134.6(3)
O(9)-Dy(4)-N(4)	63.6(3)	O(5)-Dy(4)-O(11)	87.3(3)	O(6)-Dy(4)-O(2)	75.5(4)
O(9)-Dy(4)-N(5)	62.6(4)	O(5)-Dy(4)-O(1)	69.4(3)	O(6)-Dy(4)-N(4)	62.8(4)
O(11)-Dy(4)-O(9)	74.1(3)	O(5)-Dy(4)-O(2)	76.1(3)	O(6)-Dy(4)-N(5)	66.1(4)
O(11)-Dy(4)-O(1)	66.5(3)	O(5)-Dy(4)-O(6)	124.6(3)	N(4)-Dy(4)-N(5)	101.6(4)
O(11)-Dy(4)-O(2)	132.9(3)	O(5)-Dy(4)-N(4)	67.1(3)	O(20)-Dy(1)-O(1)	67.2(3)
O(11)-Dy(4)-O(6)	144.5(4)	O(5)-Dy(4)-N(5)	148.7(4)	O(20)-Dy(1)-N(15)	77.6(3)
O(11)-Dy(4)-N(4)	130.9(3)	O(2)-Dy(4)-O(9)	145.9(3)	O(20)-Dy(1)-N(1)	132.8(4)
O(24)-Dy(1)-O(20)	77.4(3)	O(5)-Dy(1)-O(24)	142.3(3)	O(23)-Dy(1)-N(1)	150.1(4)
O(24)-Dy(1)-O(3)	86.0(3)	O(5)-Dy(1)-O(3)	75.5(3)	O(2)-Dy(1)-Dy(2)	101.3(2)
O(24)-Dy(1)-O(1)	137.1(3)	O(5)-Dy(1)-O(1)	67.7(3)	O(2)-Dy(1)-Dy(4)	42.6(2)
O(24)-Dy(1)-N(15)	62.4(4)	O(5)-Dy(1)-N(15)	132.1(4)	O(2)-Dy(1)-O(20)	87.4(3)
O(24)-Dy(1)-N(1)	63.8(3)	O(5)-Dy(1)-N(1)	78.6(3)	O(2)-Dy(1)-O(24)	87.9(3)
O(3)-Dy(1)-O(20)	142.8(3)	N(15)-Dy(1)-N(1)	104.7(3)	O(2)-Dy(1)-O(3)	125.4(3)
O(3)-Dy(1)-O(1)	136.9(3)	O(23)-Dy(1)-O(20)	75.2(3)	O(2)-Dy(1)-O(1)	67.7(3)
O(3)-Dy(1)-N(15)	65.3(3)	O(23)-Dy(1)-O(24)	126.4(3)	O(2)-Dy(1)-O(5)	77.2(3)
O(1)-Dy(1)-N(15)	127.8(3)	O(23)-Dy(1)-O(1)	67.4(3)	O(15)-Dy(3)-O(17)	74.7(3)
O(1)-Dy(1)-N(1)	127.6(3)	O(23)-Dy(1)-O(5)	86.4(3)	O(15)-Dy(3)-O(1)	136.1(3)
O(5)-Dy(1)-O(20)	134.9(3)	O(23)-Dy(1)-N(15)	67.2(3)	O(15)-Dy(3)-O(12)	86.6(4)
O(15)-Dy(3)-N(9)	63.0(3)	O(11)-Dy(3)-O(15)	90.1(3)	O(14)-Dy(3)-O(12)	91.5(4)
O(15)-Dy(3)-N(7)	63.7(4)	O(11)-Dy(3)-O(8)	76.5(4)	O(14)-Dy(3)-N(9)	66.4(3)
O(8)-Dy(3)-O(15)	145.4(3)	O(11)-Dy(3)-O(17)	84.8(3)	O(14)-Dy(3)-N(7)	153.6(4)
O(8)-Dy(3)-O(17)	133.9(3)	O(11)-Dy(3)-O(1)	66.9(3)	O(1)-Dy(3)-N(9)	128.4(3)
O(8)-Dy(3)-O(1)	67.2(3)	O(11)-Dy(3)-O(12)	123.6(3)	O(1)-Dy(3)-N(7)	127.7(3)
O(8)-Dy(3)-O(12)	75.3(4)	O(11)-Dy(3)-N(9)	152.5(4)	O(12)-Dy(3)-O(1)	137.3(4)
O(8)-Dy(3)-N(9)	128.8(4)	O(11)-Dy(3)-N(7)	65.5(4)	O(12)-Dy(3)-N(9)	63.9(4)
O(8)-Dy(3)-N(7)	81.8(4)	O(14)-Dy(3)-O(15)	124.1(3)	O(12)-Dy(3)-N(7)	62.8(4)

O(17)-Dy(3)-O(1)	66.7(3)	O(14)-	Dy(3)-O(8)	86.2(3)) N	N(7)-Dy(3)-N(9)	103.9(4)
O(17)-Dy(3)-O(12)) 146.4(3	G) O(14)-	Dy(3)-O(17)	77.1(3)) (D(3)-Dy(1)-N(1)	62.3(3)
O(17)-Dy(3)-N(9)	82.7(3)	O(14)-	Dy(3)-O(11)	133.7(3	3) (D(23)-Dy(1)-O(3)	89.0(3)
O(17)-Dy(3)-N(7)	127.5(4) O(14)-	Dy(3)-O(1)	66.9(3)) (D(2)-Dy(1)-N(15)	148.8(4
Complex 2b							
Dy(1)-O(1)	2.540(4)	Dy(2)-O(1)	2.492(4)	Dy(3)-O(1)	2.544(4)	Dy(4)-O(1)	2.496(4)
Dy(1)-O(2)	2.303(4)	Dy(2)-O(2)	2.402(4)	Dy(3)-O(8)	2.311(4)	Dy(4)-O(11)	2.328(4)
Dy(1)-O(3)	2.407(4)	Dy(2)-O(5)	2.317(4)	Dy(3)-O(9)	2.392(4)	Dy(4)-O(12)	2.425(4)
Dy(1)-O(5)	2.399(4)	Dy(2)-O(6)	2.391(4)	Dy(3)-O(11)	2.373(4)	Dy(4)-O(15)	2.310(4)
Dy(1)-O(12)	2.317(4)	Dy(2)-O(8)	2.402(4)	Dy(3)-O(18)	2.313(4)	Dy(4)-O(16)	2.398(5)
Dy(1)-O(13)	2.397(4)	Dy(2)-O(9)	2.301(4)	Dy(3)-O(19)	2.453(5)	Dy(4)-O(18)	2.373(4)
Dy(1)-O(15)	2.373(4)	Dy(2)-N(3)	2.619(5)	Dy(3)-O(23)	2.387(4)	Dy(4)-O(21)	2.429(4)
Dy(1)-N(1)	2.644(5)	Dy(2)-O(37)	2.430(4)	Dy(3)-N(11)	2.621(5)	Dy(4)-N(9)	2.642(5)
Dy(1)-N(7)	2.665(5)	Dy(2)-N(20)	2.631(5)	Dy(3)-N(16)	2.640(5)	Dy(4)-N(14)	2.617(5)
O(1)-Dy(1)-N(1) 128.	03(14) O(6)-Dy(2)-O(1)	133.81(15)	O(18)-l	Dy(3)-N(16) 1	52.03(16)
O(1)-Dy(1)-N(7) 127.	04(13) O(6)-Dy(2)-O(2)	76.12(15)	O(19)-I	Dy(3)-O(1) 1	38.02(16)
O(2)-Dy(1)-O(1) 67.1	6(14) O(6)-Dy(2)-O(8)	143.01(14)	O(19)-I	Dy(3)-N(11) 6	51.82(17)
O(2)-Dy(1)O(3	3) 126.	03(14) O(6)-Dy(2)-N(3)	62.59(16)	O(19)-I	Dy(3)-N(16) 6	64.45(16)
O(2)-Dy(1)-O(5) 75.0	1(15) O(6)-Dy(2)-O(37)	92.15(15)	O(23)-I	Dy(3)-O(1) 1	36.21(15)
O(2)-Dy(1)-O(12) 134.	28(14) O(6)-Dy(2)-N(20)	64.47(16)	O(23)-I	Dy(3)-O(9) 7	4.76(14)
O(2)-Dy(1)-O(13) 90.0	9(15) O(8)-Dy(2)-O(1)	66.50(13)	O(18)-I	Dy(3)-N(16) 1	52.03(16)
O(2)-Dy(1)-O(15) 86.4	2(14) O(8)-Dy(2)-O(2)	133.03(13)	O(19)-I	Dy(3)-O(1) 1	38.02(16)
O(2)-Dy(1)-N(1) 67.0	1(14) O(8)-Dy(2)-N(3)	134.89(15)	O(19)-l	Dy(3)-N(11) 6	51.82(17)
O(2)-Dy(1)-N(7) 150.	86(16) O(8)-Dy(2)-O(37)	75.12(14)	O(19)-I	Dy(3)-N(16) 6	4.45(16)
O(1)-Dy(1)-N(1) 128.	03(14) O(8)-Dy(2)-N(20)	79.03(15)	O(1)-D	y(4)-N(9) 1	30.45(14)
O(3)-Dy(1)-O(1) 137.	42(14) O(9)-Dy(2)-O(1)	69.28(14)	O(1)-D	y(4)-N(14) 1	28.31(14)
O(3)-Dy(1)N(1) 62.5	3(15) O(9)-Dy(2)-O(2)	87.75(14)	O(11)-I	Dy(4)-O(1) 6	68.68(14)
O(3)-Dy(1)-N(7) 64.0	1(15) O(9)-Dy(2)-O(5)	138.36(14)	O(11)-I	Dy(4)-O(12) 8	36.73(14)
O(5)-Dy(1)-O(1) 67.0	6(13) O(9)-Dy(2)-O(6)	83.49(15)	O(11)-I	Dy(4)-O(16) 8	35.66(15)
O(5)-Dy(1)-O(3) 77.5	7(14) O(9)-Dy(2)-O(8)	76.87(14)	O(11)-I	Dy(4)-O(18) 7	6.61(15)
O(5)-Dy(1)-N(1) 78.6	2(15) O(9)-Dy(2)-N(3)	145.38(16)	O(11)-I	Dy(4)-O(21) 1	25.01(15)
O(5)-Dy(1)-N(7) 132.	51(16) O(9)-Dy(2)-O(37)	125.72(14)	O(11)-l	Dy(4)-N(9) 1	48.08(15)
O(12)-Dy(1)-C	0(1) 67.1	2(13) O(9)-Dy(2)-N(20)	67.31(15)	O(11)-I	Dy(4)-N(14) 6	6.86(15)
O(12)-Dy(1)-C	0(3) 88.7	7(14) N(3)-Dy(2)-N(20)	101.10(15)	O(12)-I	Dy(4)-O(21) 1	45.12(14)
O(12)-Dy(1)-C	0(5) 86.9	9(14) O(3	7)-Dy(2)-O(1)	134.02(14)	O(12)-J	Dy(4)-N(9) 8	31.35(14)
O(12)-Dy(1)-C	0(13) 124.	85(14) O(3	7)-Dy(2)-N(3)	65.98(15)	O(12)-I	Dy(4)-N(14) 1	33.92(16)
O(12)-Dy(1)-C	0(15) 77.0	5(14) O(3	7)-Dy(2)-N(20)	62.33(16)	O(15)-I	Dy(4)-O(1) 6	9.40(13)
O(12)-Dy(1)-N	J(1) 149.	94(15) O(1)-Dy(3)-N(11)	127.17(14)	O(15)-I	Dy(4)-O(11) 1	38.07(14)
O(12)-Dy(1)-N	(7) 66.3	1(15) O(1)-Dy(3)-N(16)	128.40(14)	O(15)-I	Dy(4)-O(12) 7	6.14(14)
O(13)-Dy(1)-C	0(1) 136.	94(14) O(8)-Dy(3)-O(1)	66.93(13)	O(15)-I	Dy(4)-O(16) 1	24.84(15)
O(13)-Dy(1)-C	0(3) 85.6	1(15) O(8)-Dy(3)-O(9)	76.88(14)	O(15)-I	Dy(4)-O(18) 8	37.45(14)
O(13)-Dv(1)-C) (5) 143.	78(14) 0(8	$D_{v}(3) - O(11)$	86 17(14)	O(15)-I	Dv(4) - O(21) = 8	5.95(15)

O(13)-Dy(1)-N(1)	65.16(15)	O(8)-Dy(3)-O(18)	133.48(14)	O(15)-Dy(4)-N(9)	66.97(15)
O(13)-Dy(1)-N(7)	62.07(16)	O(37)-Dy(2)-O(1)	134.02(14)	O(15)-Dy(4)-N(14)	147.49(17)
O(15)-Dy(1)-O(1)	67.70(13)	O(8)-Dy(3)-O(23)	124.42(14)	O(16)-Dy(4)-O(1)	134.32(15)
O(15)-Dy(1)-O(3)	142.55(15)	O(8)-Dy(3)-N(11)	153.51(17)	O(16)-Dy(4)-O(12)	75.43(14)
O(15)-Dy(1)-O(5)	134.73(14)	O(8)-Dy(3)-N(16)	66.47(15)	O(16)-Dy(4)-O(21)	91.50(15)
O(15)-Dy(1)-O(13)	75.14(14)	O(9)-Dy(3)-O(1)	67.06(13)	O(16)-Dy(4)-N(9)	62.73(16)
O(15)-Dy(1)-N(1)	131.10(15)	O(9)-Dy(3)O(19)	146.13(14)	O(16)-Dy(4)-N(14)	65.93(16)
O(15)-Dy(1)-N(7)	78.57(15)	O(9)-Dy(3)-N(11)	127.96(17)	O(18)-Dy(4)-O(1)	66.53(13)
N(1)-Dy(1)-N(7)	104.93(15)	O(9)-Dy(3)-N(16)	81.94(15)	O(18)-Dy(4)-O(12)	132.83(13)
O(1)-Dy(2)-N(3)	129.68(14)	O(11)-Dy(3)-O(1)	67.19(14)	O(18)-Dy(4)-O(16)	144.36(15)
O(2)-Dy(2)-O(1)	66.54(13)	O(11)-Dy(3)-O(9)	134.24(14)	O(18)-Dy(4)-O(21)	74.65(14)
O(2)-Dy(2)-N(3)	78.06(14)	O(11)-Dy(3)-O(19)	75.59(15)	O(18)-Dy(4)-N(9)	131.96(15)
O(2)-Dy(2)-O(37)	143.48(13)	O(11)-Dy(3)-O(23)	145.12(14)	O(18)-Dy(4)-N(14)	78.66(16)
O(2)-Dy(2)-N(20)	134.77(16)	O(11)-Dy(3)-N(11)	81.15(16)	O(21)-Dy(4)-O(1)	134.18(15)
O(5)-Dy(2)-O(1)	69.10(13)	O(11)-Dy(3)-N(16)	129.15(16)	O(21)-Dy(4)-N(9)	64.04(15)
O(5)-Dy(2)-O(2)	74.71(15)	O(18)-Dy(3)-O(1)	66.56(13)	O(21)-Dy(4)-N(14)	62.15(17)
O(5)-Dy(2)-O(6)	126.24(15)	O(18)-Dy(3)-O(9)	84.64(14)	N(14)-Dy(4)-N(9)	101.22(15)
O(5)-Dy(2)-O(8)	87.94(14)	O(18)-Dy(3)-O(11)	76.88(15)	O(18)-Dy(4)N(9)	131.96(15)
O(5)-Dy(2)-N(3)	67.79(15)	O(18)-Dy(3)-O(19)	123.36(15)	O(5)-Dy(2)-N(20)	147.51(16)
O(5)-Dy(2)-O(37)	85.66(14)	O(18)-Dy(3)-O(23)	89.85(15)	O(18)-Dy(3)-N(11)	65.71(16)

Figure S5 Coordination geometry of Dy^{3+} ions in (a) complex **1a** and (b) complex **1b**. (Dy^{3+} : yellow, O : red, N : blue) Coordination geometry of Na⁺ ions in (c) complex **1a** and (d) complex **1b**. (O : red, N : blue, Na⁺: light blue)

Figure S6 Coordination geometry of Dy^{3+} ions in (a) complex **2a** and (b) complex **2b.** $(Dy^{3+}$: yellow, O : red, N : blue)

Figure S7 IR spectra of complex 1a, complex 1b and S-H₂L¹.

Figure S8 IR spectra of complex 2a, complex 2b and $S-H_2L^2$.

Figure S9 Comparing the simulated PXRD with experimental patterns.

Figure S11 TGA spectra of complex 2a and 2b.

Figure S12 CD spectra of S-H₂L¹ and R-H₂L¹ in methanol solution (3 ×10⁻⁴ M).

Figure S13 CD spectra of S-H₂L² and R-H₂L² in methanol solution (3 ×10⁻⁴ M).

Figure S14 (a) HRESI-MS spectrum of complex **1a** in methanol. (b) Compared the experimental isotopic distribution with the theoretical isotopic distribution and the assignments of corresponding peaks.

Figure S15 (a) HRESI-MS spectrum of complex **2a** in methanol. (b) Compared the experimental isotopic distribution with the theoretical isotopic distribution and the assignments of corresponding peaks.

Figure S16 SEM image of crystal prepared from mixed-metal experiment.

Figure S17. The partial ¹H-NMR spectra (CD₃OD and CD₃CN; v:v = 2:1) of (*S*)-H₂L¹ with the mixed metal ions and single metal ions: (a) mixed metal ions; (b) Na⁺; (c) K⁺; (d) Li⁺.