Co-existence of ferro- and antiferromagnetic interactions in a hexanuclear mixed-valence Co^{III}₂Mn^{II}₂Mn^{IV}₂ cluster sustained by a multidentate Schiff base ligand

Oleh Stetsiuk,^{ab} Valentyn Synytsia,^b Svitlana R. Petrusenko,^b Vladimir N. Kokozay,^b Abdelkrim El-Ghayoury,^a Joan Cano,^{*c} Francesc Lloret,^c Miguel Julve,^c Benoit Fleury,^{de} and Narcis Avarvari^{*a}

Supplementary Information

 Table S1. Bond Valence Sum calculations for complex 1

Ion	BVS	Ro	В
Mn1	4.00	1.753	
Mn2	2.05	2.133 (Cl); 1.765 (O)	0.37
Col	3.08	1.75 (N); 1.637 (O)	

Figure S1. IR spectrum of complex 1.

Figure S2. Co2p X-ray photoelectron spectrum of 1.

Figure S3. Mn2p X-ray photoelectron spectrum of 1.

Figure S4. Mn3s X-ray photoelectron spectrum of 1.

Figure S5. Hydrogen bonds (dashed green lines) in the crystal structure of **1**. Hydrogen atoms which are not involved in these interactions were omitted for clarity.

Table S2. Calculated spin configurations of the manganese atoms and their relative energies as a function of the different magnetic coupling parameters (J_i) for 1 including the interaction between second neighbours according to Scheme 1. The spin configuration used as a reference is that with the maximum multiplicity (S = 8) which is generated from the parallel alignment of all local spin moments. Only the centres with an inverted spin moment are noted.

Spin conf	S	J_1	J_2	J_3	j
{1}	5	6	9	9	0
{2}	3	0	9	9	15
{1, 2}	0	6	0	18	15
$\{1, 1^i\}$	2	0	18	18	0
$\{1, 2^i\}$	0	6	18	0	15