Enhanced adsorptive desulfurization by iso-structural amino bearing IRMOF-3 and IRMOF-3@Al₂O₃ versus MOF-5 and MOF-5@Al₂O₃ revealing the predominant role of hydrogen bonding

Zareen Zuhra¹, Cuncun Mu¹, Fang Tang, Yunshan Zhou*, Lijuan Zhang*, Zipeng Zhao and Libo Qin

State Key Laboratory of Chemical Resource Engineering, Institute of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China

1. Experimental

1.1. Materials

 γ -Al₂O₃ beads (S_{BET}, 192.08 m² g⁻¹; V_{total}, 0.679 cm³ g⁻¹; average pore size, 12.06 nm; diameter, ca.2 mm) were supplied by the State Key Laboratory of Chemical Resource Engineering (Beijing University of Chemical Technology, China), and were washed with distilled water and pre-treated at 200 °C for 2 hours in muffle furnace every time before use to remove water and other contaminants. All the other chemicals were purchased from commercial sources: zinc nitrate hexahydrate (AR grade) and *N*,*N*-dimethyl formamide (DMF, AR grade) were from Beijing Chemical Reagent Co. Ltd.; terephthalic acid (H₂BDC, 99%) was from Aladdin Reagent Co. Ltd.; 2-amion terephthalic acid was from Alfa Aesar Chemical Co. Ltd.; n-octane (AR grade) was from Tianjin Guangfu Technology Development Co. Ltd.; methanol (HPLC grade) was from Tianjin Siyou Chemicals Co. Ltd.; BT (99%), 3-MT (99%) and DBT (99%) were from J&K Scientific Ltd.; 4,6-DMDBT (99%) was from Beingjing HWRK Chemicals Co. Ltd. All reagents were used as received without further purification.

1.2. Apparatus for characterization

The Fourier Transform Infrared spectra (FT-IR) were tested on a Nicolet FTIR-170SX spectrometer with KBr pellets in the range of 400-4000 cm⁻¹. Powder X-ray diffraction (XRD) was recorded on Rigaku D/max 2500 X-ray diffractometer with scanning rate of 10° min⁻¹ and scanning range from 5° to 70°, and incident beam is graphite-monochromatic Cu K_{α} radiation (λ = 0.15405 nm). Scanning electron microscopy (SEM) and Energy Dispersive Spectrometer (EDS) were performed on a Zeiss Supra55 scanning electron microscopy with an accelerating voltage of 20 kV. Element analysis was measured on ARL9800 X-ray fluorescence spectrometer (XRF). Mechanical strength data were collected using YHKC-2A particle strength tester. TG-DTA were tested on Netzsch STA449 thermogravimetric analyzer with heating rate of 10° min⁻¹ from 25 to 800 °C in the air.

The sulfur contents were analyzed by HPLC Agilent 1100 series with C-18 column, diameter 4.6 mm, length 250 mm, diameter of filler 5 μ m, 10% water and 90% methanol as the initial mobile phase, gradient elution to 100% methanol in 10 min with flow rate of 1.0 mL min⁻¹.

1.3. Preparation of adsorbents

1.3.1 Pretreatment of γ -Al₂O₃ beads

The γ -Al₂O₃ beads were washed three times in deionized water, placed in muffle furnace with calcination of 200 °C for 2 h after drying, getting rid of water molecules and other impurity molecules.

1.3.2 Preparation of adsorbents

MOF-5 was prepared by some modifications in accordance with the literature method.^{S1} The detailed procedures are as follows: in a 50 mL of Teflon-lined stainless-steel autoclave, 1.5 mmol of terephthalic acid and 3 mmol zinc nitrate hexahydrate were dissolved in 30 mL DMF, stirring 0.5 h, and then the mixture was heated at 120 °C for 21 h. After the autoclave cooling to room temperature, the product was separated, washed with DMF (3×10 mL), and immersed in chloroform for three days (3×10 mL), changing solution every 24 h. The material was then evacuated at 70 °C for 12 h to remove water molecules and stored in desiccator.

IRMOF-3 was prepared by some modifications in accordance with the literature method.^{S2} The detailed procedures are as follows: in a 50 ml of Teflon-lined stainless-steel autoclave, 0.6 mmol of 2-amino terephthalic acid and 1.8 mmol zinc nitrate hexahydrate were dissolved in 30 mL DMF, stirring 0.5 h, and then the mixture was heated at 110 °C for 48 h. After the autoclave cooling to room temperature, the product was separated, washed with DMF (3×10 mL), and immersed in chloroform for three days (3×10 mL), changing solution every 24 h. The material was then evacuated at 70 °C for 12 h to remove water molecules and stored in desiccator.

The preparation methods of MOF-5@ γ -Al₂O₃ and IRMOR-3@ γ -Al₂O₃ were the same with those of the corresponding MOFs except for introduction of 1.0 g γ -Al₂O₃ beads into the mixed solution of the other reactants, which had been stirred for 0.5 h previously.

1.4. Adsorption desulfurization performance

1.4.1 Preparation of model oil

A certain amount of BT, DBT, 3-MT, 4,6-DMDBT was dissolved in 20 g n-octane solution, and the initial sulfur content of model oil was 1000 ppmw_s.

1.4.2 Adsorption desulfurization experiments

Prior to adsorption experiments, γ -Al₂O₃ beads, MOF-5, IRMOF-3 and MOF-5@ γ -Al₂O₃, IRMOF-3@ γ -Al₂O₃ composite materials were degassed under vacuum at 150 °C overnight to remove water and other contaminants. Treated adsorbents were added into round bottom flask with model oil in water bath at atmospheric pressure under stirring for 1 h, controlling the temperature of 20, 30, 40 and 50 °C, respectively. The liquid phase was then separated from the adsorbent by filtration and the S-content of the treated oil was determined by HPLC.

The adsorption capacity under different experimental conditions was calculated by the following formula:

$$Q_i = \frac{W}{M} (C_0 - C_i) \times 10^{-3}$$
(1)

Where Q_i is the adsorption capacity of sulfur adsorbed on the adsorbent (mg S·g⁻¹ MOF), W is the mass of model oil (g), M is the mass of the MOF used (g), and C_0 and C_i are the initial and final S-concentrations in the model oil ($\mu g/g$), respectively.

1.4.2 Adsorbents regeneration experiment

After adsorption desulfurization experiment, adsorbents were washed in acetone using soxhlet extractor. The eluent samples were analyzed by HPLC, until peaks of sulfur-containing compounds no longer appear, showing sulfur-containing compounds removed completely. After washing, adsorbents were dried under vacuum at 100 °C for 12 h and experiments for reusing are the same with the as-synthesized samples.

2. Effect of time on the absorption capabilities

Fig. S1 Effect of adsorption time on desulfurization capacity for DBT (a, e), 3-MT (b, f), 4,6-DMDBT (c, g) over γ -Al₂O₃, MOF-5, MOF-5@ γ -Al₂O₃ (A) and γ -Al₂O₃, IRMOF-3, IRMOF-3@ γ -Al₂O₃ (B). Conditions: model oil 20 g, γ -Al₂O₃ 0.5 g, MOF-5 0.05 g, MOF-5/IRMOF-3@ γ -Al₂O₃ 0.5 g, [BT], [DBT], [3-MT] and [4,6-DMDBT] 1000 ppmws, temperature 30 °C.

	MOF-5	$MOF-5@\gamma-Al_2O_3$	IRMOF-3	IRMOF-3@y-Al ₂ O ₃					
Adsorption capacity at 10 min									
BT	21.1	30.6	32.1	40.8					
DBT	16.3	23.5	35.9	45.8					
3-MT	10.1	19.5	16.1	22.5					
DMDBT	4.9	11.1	9.3	16.3					
	I	Adsorption capacity at 60) min						
DBT	24.1	31.4	45.1	54.9					
3-MT	15.4	26.3	25.1	32.1					
DMDBT	10.8	17.9	16.3	24.2					
BT	31.9	40.7	41.7	50.6					

Table S1. The adsorption capacities of the obtained MOFs and composites at 10 and 60 min.^a

^aReaction conditions: model oil 20 g, γ -Al₂O₃ 0.5 g, MOF-5 0.05 g, MOF-5/IRMOF-3@ γ -Al₂O₃ 0.5 g, [BT], [DBT], [3-MT] and [4,6-DMDBT] 1000 ppmw_s, temperature 30 °C.

3. Effect of temperature on the absorption capabilities

Fig. S2 Effect of adsorption temperature on desulfurization capacity for DBT (a, d), 3-MT (b, e), 4,6-DMDBT (c, f) over γ -Al₂O₃, MOF-5, MOF-5@ γ -Al₂O₃ (A) and γ -Al₂O₃, IRMOF-3, IRMOF-3@ γ -Al₂O₃ (B). Conditions: model oil 20 g, γ -Al₂O₃ 0.5 g, MOF-5 0.05 g, MOF-5/IRMOF-3@ γ -Al₂O₃ 0.5 g, [BT], [DBT], [3-MT] and [4,6-DMDBT] 1000 ppmw_s, time 60 min.

	1 1		1	
	MOF-5	$MOF-5@\gamma-Al_2O_3$	IRMOF-3	IRMOF-3@y-Al ₂ O ₃
BT	32.0	40.8	41.6	50.7
DBT	24.1	31.5	45.2	54.9
3-MT	19.6	26.3	25.2	32.0
DMDBT	10.8	18.0	16.4	24.2

Table S2. The adsorption capacities of the obtained MOFs and composites at 30 °C.^a

^aReaction conditions: model oil 20 g, γ -Al₂O₃ 0.5 g, MOF-5 0.05 g, MOF-5/IRMOF-3@ γ -Al₂O₃ 0.5 g, [BT], [DBT], [3-MT] and [4,6-DMDBT] 1000 ppmw_s, time 60 min.

4. Effect of mass ratio between oil and adsorbent on absorption capabilities

Fig. S3 Effect of mass ratio between oil and adsorbent on desulfurization capacity for DBT (a, d),

3-MT (b, e), 4,6-DMDBT (c, f) over MOF-5, MOF-5@ γ -Al₂O₃ (A) and IRMOF-3, IRMOF-3@ γ -Al₂O₃ (B). Conditions: model oil 20 g, [BT], [DBT], [3-MT] and [4,6-DMDBT] 1000 ppmw_s, temperature 30 °C, time 60 min.

5. Reusability of the adsorbents

Fig. S4 Effect of recycle times of MOF-5, MOF-5@ γ -Al₂O₃ (A) and IRMOF-3 and IRMOF-3@ γ -Al₂O₃ (B) on sulfur adsorption capacities for DBT (a), 3-MT (b), DMDBT (c). Conditions: model oil 20g, the mass ratio M_{MOF-5@ γ -Al₂O₃/M_{oil} 1:40, [BT], [DBT], [3-MT], [4,6-DMDBT] 1000ppmw_s, time 60 min, temperature 30 °C.}

Fig. S5 FT-IR spectra of the fresh (a, b) and fifth regenerated (c, d) of MOF-5@ γ -Al₂O₃ (A) and IRMOF-3@ γ -Al₂O₃ (B) for BT.

Fig. S6 XRD spectra of the fresh (a, b) and fifth regenerated (c, d) of MOF-5@ γ -Al₂O₃ (A) and IRMOF-3@ γ -Al₂O₃ (B) for BT.

6. Kinetic analysis

Kinetic constant was calculated by second-order kinetic equations as follows:^{S3, S4}

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(2)

where q_e is equilibrium adsorption capacity (mg S/g MOF), q_t is adsorption capacity at time *t* (mg S/g MOF), k_2 is second-order kinetic equilibrium constant.

Fig. S7 Plots of pseudo-second order kinetics of BT adsorption over MOF-5 and MOF-5@ γ -Al₂O₃ at different temperature: C₀ = 250 (a), 500 (b) and 1000 (c) ppmw_s.

Fig. S8 Plots of pseudo-second order kinetics of BT adsorption over IRMOF-3 and IRMOF-3@ γ -Al₂O₃ at different temperature: C₀ = 250 (a), 500 (b) and 1000 (c) ppmw_s.

Table S3. The pseudo-second-order kinetic constants (k_2) of MOF-5, MOF-5@ γ -Al₂O₃ and IRMOF-3, IRMOF-3@ γ -Al₂O₃ at various DBT concentrations and different temperatures. The maximum adsorption capacities (Q_0) and the molar ratios of DBT that adsorbed on each metal ion are also presented.

A daanhant	т/0С	k	₂ /10 ⁻³ g min ⁻¹ m	<i>Q</i> ₀ /mg S g ⁻¹	DBT/metal	
Ausorbent	I/ C	250 ppmws	500 $ppmw_{S}$	1000 ppmws	MOF	(mol/mol)
	20	5.07 (4.82)	5.45 (5.05)	5.62 (5.36)	47.68 (35.97)	0.29 (0.22)
MOF-5@	30	5.27 (4.94)	5.59 (5.11)	5.81 (5.65)	50.68 (39.21)	0.31 (0.24)
γ-Al ₂ O ₃ (MOE-5)	40	5.54 (5.19)	5.84 (5.26)	6.13 (5.86)	42.73 (32.28)	0.26 (0.19)
(1101 5)	50	5.71 (5.36)	6.11 (5.51)	6.39 (5.97)	37.57 (27.31)	0.23 (0.16)
	20	6.12 (5.89)	6.47 (6.23)	6.71 (6.50)	82.64 (68.49)	0.53 (0.44)
IRMOF-3	30	6.33 (6.07)	6.57 (6.35)	6.91 (6.68)	86.58 (72.25)	0.56 (0.46)
@γ-AI ₂ O ₃ (IRMOF-3)	40	6.54 (6.39)	6.79 (6.69)	7.19 (7.04)	74.02 (64.59)	0.47 (0.41)
	50	6.87 (6.64)	6.97 (6.86)	7.29 (7.12)	65.74 (57.21)	0.42 (0.37)

Table S4. The pseudo-second-order kinetic constants (k_2) of MOF-5, MOF-5@ γ -Al₂O₃ and IRMOF-3, IRMOF-3@ γ -Al₂O₃ at various 3-MT concentrations and different temperatures. The maximum adsorption capacities (Q_0) and the molar ratios of 3-MT that adsorbed on each metal ion are also presented.

Adsorbort	т/0С	k	x ₂ /10 ⁻³ g min ⁻¹ n	ng-1	$Q_0/{ m mg~S~g^{-1}}$	3-MT/metal
Ausorbent	I/ C	250 ppmws	500 $ppmw_{S}$	1000 ppmw _s	MOF	(mol/mol)
	20	3.21 (2.89)	3.49 (2.97)	3.58 (3.05)	29.76 (21.82)	0.18 (0.13)
MOF-5@	30	3.31 (2.94)	3.54 (3.11)	3.62 (3.37)	32.65 (24.73)	0.19 (0.15)
γ-Al ₂ O ₃ (MOE-5)	40	3.41 (3.19)	3.60 (3.39)	3.91 (3.59)	28.44 (19.01)	0.17 (0.11)
(1101-5)	50	3.57 (3.31)	3.76 (3.57)	3.99 (3.64)	25.24 (16.91)	0.15 (0.11)
IDMOE 2	20	3.97 (3.57)	4.16 (3.89)	4.56 (4.17)	35.99 (27.89)	0.23 (0.17)
IRMOF-3	30	4.26 (3.87)	4.62 (4.21)	5.09 (4.77)	39.15 (31.26)	0.25 (0.19)
(IRMOF-3)	40	4.33 (4.02)	4.77 (4.42)	5.19 (4.96)	34.09 (26.13)	0.21 (0.16)
	50	4.93 (4.26)	5.08 (4.73)	5.43 (5.29)	29.94 (21.31)	0.19 (0.14)

Table S5. The pseudo-second-order kinetic constants (k_2) of MOF-5, MOF-5@ γ -Al₂O₃ and IRMOF-3, IRMOF-3@ γ -Al₂O₃ at various 4,6-DMDBT concentrations and different temperatures. The maximum adsorption capacities (Q_0) and the molar ratios of 4,6-DMDBT that adsorbed on each metal ion are also presented.

Adsorbent	T/ºC	k 250 ppmw _s	₂ /10 ⁻³ g min ⁻¹ m 500 ppmw _s	g ⁻¹ 1000 ppmw _s	<i>Q</i> ₀ /mg S g ⁻¹ MOF	4,6- DMDBT/met al (mol/mol)
MOF-5@	20	4.07 (3.45)	4.32 (3.83)	4.56 (4.14)	18.84 (11.21)	0.11 (0.07)
γ-Al ₂ O ₃	30	4.44 (4.11)	4.87 (4.42)	5.07 (4.74)	20.21 (12.81)	0.12 (0.08)
(MOF-5)	40	4.75 (4.28)	5.24 (4.56)	5.54 (5.01)	17.65 (10.84)	0.11 (0.06)

	50	5.17 (4.79)	5.45 (5.17)	5.63 (5.32)	15.39 (9.18)	0.09 (0.05)
	20	4.45 (4.18)	4.87 (4.58)	5.06 (4.83)	24.79 (16.48)	0.16 (0.11)
IRMOF-3	30	4.56 (4.44)	5.01 (4.82)	5.38 (5.15)	27.01 (18.95)	0.17 (0.12)
$(a)\gamma$ -Al ₂ O ₃	40	5.15 (4.75)	5.32 (5.01)	5.78 (5.31)	24.16 (15.91)	0.15 (0.10)
(IKMOF-3)	50	5.26 (4.91)	5.59 (5.25)	6.01 (5.78)	21.46 (12.87)	0.13 (0.08)

7. Thermodynamic analysis

Adsorption isotherm was simulated by Langmuir adsorption isothermal model with the Langmuir equation as follows:^[34,36]

$$\frac{C_e}{q_e} = \frac{C_e}{Q_0} + \frac{1}{Q_0 b} \tag{3}$$

where C_e is equilibrium concentration of the sulfur in model oil (mg/L), q_e is equilibrium adsorption capacity (mg S/g MOF), Q_0 is saturated adsorption capacity (mg S/g MOF), b is Langmuir constant(L/mg). Q_0 and b were deduced by plotting C_e versus C_e/q_e .

To shed light on the thermodynamics of adsorption process, we calculated the Gibbs free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) based on the Gibbs and Van't Hoff equations:^[37]

$$\Delta G = -RT \ln b \qquad (4)$$
$$\ln b = \frac{\Delta S}{R} - \frac{\Delta H}{RT} \qquad (5)$$

where *b* is Langmuir constant (L/mol), and enthalpy change (Δ H) and entropy change (Δ S) were determined by plotting ln*b* versus 1/T.

7.1 Adsorption isotherms of BT over the MOFs

Fig. S9 Adsorption isotherms of BT over MOF-5 and MOF-5@ γ -Al₂O₃ (A), IRMOF-3 and IRMOF-3@ γ -Al₂O₃ (B) at 20 °C (a, d), 40 °C (b, e) and 50 °C (c, f).

7.2 The Langmuir fitting curves for SCCs over the adsorbents

Fig. S10 Langmuir fitting curves for BT over MOF-5 and MOF-5@ γ -Al₂O₃ at 20 °C (A), 30 °C (B), 40 °C (C) and 50 °C (D).

Fig. S11 Langmuir fitting curves for BT over IRMOF-3 and IRMOF-3@ γ -Al₂O₃ at 20 °C (A), 30 °C (B), 40 °C (C) and 50 °C (D).

7.3 . Plots of Inb versus 1/T for the adsorbents

Fig. S12 Plots of $\ln b$ versus 1/T of MOF-5 and MOF-5@ γ -Al₂O₃: BT (A), DBT (B), 3-MT (C), 4,6-DMDBT (D).

Fig. S13 Plots of ln*b* versus 1/T of IRMOF-3 and IRMOF-3@ γ -Al₂O₃: BT (A), DBT (B), 3-MT (C), 4,6-DMDBT (D).

Table S6. The thermodynamic parameters of DBT adsorption over MOF-5@ γ -Al₂O₃ and IRMOF-3@ γ -Al₂O₃ at different temperatures.

Adsorbent	T/ºC	$\Delta G/$ kJ mol ⁻¹	∆ <i>H</i> /kJ mol ⁻¹	Δ <i>S</i> /J mol ⁻¹ K ⁻¹
	20	-10.64 (-10.57)		
	30	-11.17 (-11.07)	4 91 (4 09)	52.72 (49.96)
$\mathbf{WOF} - 5(\mathbf{W}\gamma - \mathbf{AI}_2\mathbf{O}_3 \ (\mathbf{WOF} - 5)$	40	-11.71 (-11.54)	4.81 (4.08)	
	50	-12.21 (-12.08)		
	20	-11.37 (-10.85)		
IRMOF-3@y-Al ₂ O ₃ (IRMOF-	30	-11.84 (-11.44)	7.44 (6.53)	60 76 (65 81)
3)	40	-12.32 (-11.95)		09.70 (03.81)
	50	-12.85 (-12.54)		

Table	S7.	The	thermodynamic	parameters	of 3-MT	adsorption	over	$MOF-5@\gamma-Al_2O_3$	and
IRMO	F-3@	γ-Al	₂ O ₃ at different te	mperatures.					

Adsorbent	T/ºC	$\Delta G/$ kJ mol ⁻¹	∆ <i>H</i> /kJ mol ⁻¹	ΔS/J mol ⁻¹ K ⁻¹

	20	-12.68 (-12.39)		
	30	-13.37 (-13.06)	6.57 (6.06)	67.04 (64.26)
MOF-5(<i>ω</i> γ-Al ₂ O ₃ (MOF-5)	40	-14.01 (-13.68)		
	50	-14.74 (-14.38)		
	20	-12.98 (-12.77)		
IRMOF-3@y-Al ₂ O ₃ (IRMOF-	30	-13.74 (-13.41)	7.32 (6.84)	68.23 (65.64)
3)	40	-14.45 (-14.04)		
	50	-15.06 (-14.76)		

Table S8. The thermodynamic parameters of 4,6-DMDBT adsorption over MOF-5@ γ -Al₂O₃ and IRMOF-3@ γ -Al₂O₃ at different temperatures.

Adsorbent	T/ºC	$\Delta G/kJ \text{ mol}^{-1}$	∆ <i>H</i> /kJ mol ⁻¹	Δ <i>S</i> /J mol ⁻¹ K ⁻¹
	20	-14.11 (-13.07)		75.89 (70.06)
	30	-14.86 (-13.92)	7.08 (6.00)	
$MOF-5(@\gamma-AI_2O_3)$	40	40 -15.53 (-14.51)	7.98 (0.99)	
	50	-16.43 (-15.20)		
	20	-14.36 (-13.74)		
IDMOE 2@w ALO (IDMOE 2)	30	-15.31 (14.38)	8.29 (7.41)	76.33 (70.58)
$\mathbf{IKWOF} - \mathbf{J}(\mathbf{W})^{-\mathbf{AI}_{2}} \mathbf{O}_{3}(\mathbf{IKWOF} - \mathbf{J})$	40	-15.59 (-14.83)		
	50	-15.86 (-15.41)		

References

- S1. J. Hafizovic, M. Bjørgen, U. Olsbye, P. D. C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti and K. P. Lillerud, J. Am. Chem. Soc., 2007, 129, 3612-3620.
- S2. X.-L. Wang, H.-L. Fan, Z. Tian, E.-Y. He, Y. Li and J. Shangguan, Appl. Surf. Sci., 2014, 289, 107-113.
- S3. Y. S. Ho and G. McKay, Process Biochem., 1999, 34, 451-465.
- S4. B. H. Hameed and A. A. Rahman, J. Hazard. Mater., 2008, 160, 576-581.