Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information

Assessment of the Intramolecular Magnetic Interactions in the Highly Iron(III) Porphyrin π - Radical Cations: Change From Planar to saddled conformations

Ching-Chin Chen,^{†,⊥} Yi-Wen Wu,^{†,⊥} Mikio Nakamura[‡], Ru-Jen Cheng,[†] Tzu-Hsien Tseng[†] and Peter Ping-Yu Chen^{*,†}

† Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan (R.O.C.)

‡ Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, and Research Center for Materials with Integrated Properties, Toho University, Funabashi 274-8510, Japan

Correspondence to: pychen@dragon.nchu.edu.tw

Table S1. Crystal data and structure refinement for [Fe(OETPP•)Cl][SbCl₆] ·······S4 **Table S2**. Crystal data and structure refinement for [Fe(OMTPP•)Cl][SbCl₆]·······S5 Fig. S1. Absorption spectral changes of (a) Fe(OMTPP)Cl and (b) Fe(OETPP)Cl upon oneelectron oxidation with 1.2 equiv of (Phox+•)SbCl₆ in a solution of dichloromethane Fig. S2. Variable-Temperature visible spectra of [Fe(OETPP)Cl][SbCl₆] at 30°C -70 °C in Fig. S3. Deviations of the core atoms from the average plane of magnetic data of 24 porphyrin atoms in unit of 10⁻² Å together with the Fe-N_p bond length (Å) for [Fe(OETPP•)Cl][SbCl₆] 1 and [Fe(OETPP•)Cl][SbCl₆] 2 ······S7 **Table S3** Selected Molecular orbital energies (eV) and compositions (α -set and β -set) for $[Fe(OETPP•)Cl]^+ (S = 2)$ ······S7 Table S4. Calculated effective orbital interactions between P-1 and FeCl²⁺ fragments for [Fe(TPP•)Cl]⁺, [Fe(OMTPP•)Cl]⁺ and [Fe(OETPP•)Cl]⁺ ·····S8 (a) The occupied α -set $d_{x^2-y^2-a_{2u}}$ MO, and (b) the unoccupied β -set $d_{x^2-y^2-a_{2u}}$ MO in Fig. S4. **Fig. S5.** Selected α -set molecular orbitals based on spin-unrestricted calculations for Fig. S6. Correlation between the calculated Fermi contact spin densities at each symmetrydistinct hydrogen atom and the experimental isotropic shifts of [Fe(OETPP•)Cl][SbCl₆] Fig. S7. Observed VT ¹H NMR spectra of [Fe(TPP•)Cl][SbCl₆] in CD₂Cl₂ ······S15 Fig. S8. ¹H NMR of Fe(OETPP)Cl and [Fe(OETPP•)Cl][SbCl₆] ·······S16

Fig. S9. ¹ H NMR of [Fe(OETPP)Cl][SbCl ₆] and [Fe(OETp-CH ₃ PP•)Cl][SbCl ₆] ······S17
Table S5 . Theoretically calculated paramagnetic shift of [Fe(OETPP•)Cl][SbCl ₆] ······S18
Table S6. Crystal data and structure refinement for [Fe(OET(p-CH ₃)PP•)Cl][SbCl ₆]S19
Fig. S10. ORTEP diagram of [Fe(OET(p-CH ₃)PP•)Cl][SbCl ₆] ······S20
Cartesian coordinates of [Fe(TPP•)Cl] ⁺ for calculation ······S21
Cartesian coordinates of Fe(OETPP)Cl for calculation
Cartesian coordinates of [Fe(OETPP•)Cl] ⁺ for calculation ······S24
Cartesian coordinates of Cu(OETPP•)ClO ₄ for calculation ······S26
References ······S29

Identification code	feoetppsbcl6	
Empirical formula	C61 H62 Cl9 Fe N4 Sb	
Formula weight	1347.79	
Temperature	150(2) K	
Wavelength	0.71076 Å	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions	a = 17.4501(8) Å	<i>α</i> = 90°.
	b = 18.5354(10) Å	β=106.174(2)°.
	c = 21.6356(12) Å	$\gamma = 90^{\circ}$.
Volume	6720.9(6) Å ³	
Z	4	
Density (calculated)	1.332 Mg/m ³	
Absorption coefficient	1.014 mm ⁻¹	
F(000)	2744	
Crystal size	0.21 x 0.18 x 0.095 mm ³	
Theta range for data collection	2.852 to 25.999°.	
Index ranges	-21<=h<=21, -22<=k<=22, -26	o<=l<=26
Reflections collected	216615	
Independent reflections	13176 [R(int) = 0.0427]	
Completeness to theta = 25.243°	99.7 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	13176 / 299 / 637	
Goodness-of-fit on F ²	1.075	
Final R indices [I>2sigma(I)]	R1 = 0.0799, wR2 = 0.2894	
R indices (all data)	R1 = 0.0950, wR2 = 0.3407	
Extinction coefficient	n/a	
Largest diff. peak and hole	4.181 and -1.790 e.Å ⁻³	

Table S1. Crystal data and structure refinement for [Fe(OETPP•)Cl][SbCl₆].

5	
Identification code	[Fe(OMTPP)Cl][SbCl6]
Empirical formula	C52 H44 Cl7 Fe N4 Sb
Formula weight	1150.66
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Cmc2 ₁
Unit cell dimensions	$a = 16.944(2) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 34.231(5) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 9.7978(11) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	5682.8(12) Å ³
Z	4
Density (calculated)	1.345 Mg/m ³
Absorption coefficient	1.095 mm ⁻¹
F(000)	2320
Crystal size	0.4 x 0.4 x 0.4 mm ³
Theta range for data collection	2.992 to 26.000°.
Index ranges	-20<=h<=20, -42<=k<=42, -12<=l<=12
Reflections collected	76685
Independent reflections	5780 [R(int) = 0.0390]
Completeness to theta = 25.242°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	26.403 and 2.9615
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5780 / 1 / 309
Goodness-of-fit on F ²	1.045
Final R indices [I>2sigma(I)]	R1 = 0.0368, wR2 = 0.1213
R indices (all data)	R1 = 0.0390, $wR2 = 0.1244$
Absolute structure parameter	0.01(2)
Extinction coefficient	n/a
Largest diff. peak and hole	2.639 and -1.062 e.Å ⁻³

Table S2. Crystal data and structure refinement for [Fe(OMTPP•)Cl][SbCl₆].

Fig. S1. Absorption spectral changes of (a) Fe(OMTPP)Cl and (b) Fe(OETPP)Cl upon one-electron oxidation with 1.2 equiv of (Phox+•)SbCl₆ in a solution of dichloromethane at room temperature.

Fig. S2. Variable-Temperature visible spectra of [Fe(OETPP)Cl][SbCl₆] at 30 °C - -70

°C in CH₂Cl_{2.}

Fig. S3. Deviations of the core atoms from the average plane of 24 porphyrin atoms in unit of 10^{-2} Å together with the Fe-N_p bond length (Å) for [Fe(OETPP•)Cl][SbCl₆] **1** and [Fe(OETPP•)Cl][SbCl₆] **2**. The angle (°) described in each pyrrole ring is the dihedral angle between the pyrrole and the mean porphyrin plane.

	1						
Orb.	Occ	Primary Contributors SFO (percent)					
Symmetry Representation for Spin- α -A1 symmetry							
$a_{2u}+d_{x^2-y^2}(\alpha)$	1	C15(1P:z)(16.36) Cl2(1P:z)(14.12) C15(1P:x)(13.39)					
		Fe1(1D:z2)(12.66) C23(1P:z)(7.94)					
$d_{z^2}(\alpha)$	1	N4(1P:z)(18.32) Fe1(1D:x2-y2)(17.76)					
		C23(1P:z)(10.46) Cl2(1P:z)(8.07) Fe1(1D:z2)(7.52)					
$d_{x^2-y^2}-a_{2u}(\alpha)$	0	C23(1P:z)(21.81) Fe1(1D:x2-y2)(20.67)					
		N3(1P:x)(15.91) N4(1P:y)(12.01)					
Symmetry	Repres	entation for Spin-β-A1 symmetry					
$a_{2u} + d_{x^2-y^2}(\beta)$	1	C23(1P:z)(33.33) C15(1P:z)(5.96) N4(1P:z)(5.64)					
$d_{z^2}(\beta)$	0	Fe1(1D:z2)(59.79) Cl2(1P:z)(15.38) C23(1P:z)(5.10)					
$d_{x^2-y^2}(\beta)$	0	Fe1(1D:x2-y2)(59.55) N4(1P:y)(8.71) N3(1P:x)(7.65)					
Symmetry	Repres	entation for Spin-α-A2 symmetry					
$d_{xy}(\alpha)$	1	Fe1(1D:xy)(53.91)					
Symmetry	Repres	entation for Spin-β-A2 symmetry					
d _{xy} (β)	0	Fe1(1D:xy)(66.68) C9(1P:y)(5.93) C7(1P:z)(5.86)					
Symmetry	Repres	entation for Spin-α-B1 symmetry					
$d_{xz}(\alpha)$	1	Cl2(1P:x)(15.08) N3(1P:x)(13.83) Fe1(1D:xz)(8.62)					
		C23(1P:z)(8.56)					
Symmetry	Repres	entation for Spin-β-B1 symmetry					
$d_{xz}(\beta)$	0	Fe1(1D:xz)(75.44) Cl2(1P:x)(10.43)					
Symmetry	Repres	entation for Spin- α -B2 symmetry					
$d_{yz}(\alpha)$	1	Fe1(1D:yz)(20.36) Cl2(1P:y)(7.64) H71(1S)(6.47)					
-		H91(1S)(5.05)					
Symmetry	Repres	entation for Spin-β-B2 symmetry					
	$\begin{tabular}{ c c c c } \hline Orb. \\ \hline Symmetry \\ \hline a_{2u}+d_{x^{2}-y^{2}}(\alpha) \\ \hline d_{z^{2}}(\alpha) \\ \hline d_{z^{2}}(\alpha) \\ \hline d_{x^{2}-y^{2}-a_{2u}}(\alpha) \\ \hline symmetry \\ \hline a_{2u}+d_{x^{2}-y^{2}}(\beta) \\ \hline d_{z^{2}}(\beta) \\ \hline d_{z^{2}}(\beta) \\ \hline d_{x^{2}-y^{2}}(\beta) \\ \hline d_{x^{2}-y^{2}}(\beta) \\ \hline d_{xy}(\alpha) \\ \hline symmetry \\ \hline d_{xy}(\beta) \\ \hline symmetry \\ \hline d_{xz}(\alpha) \\ \hline symmetry \\ \hline d_{xz}(\beta) \\ \hline symmetry \\ \hline d_{yz}(\alpha) \\ \hline symmetry \\ \hline d_{yz}(\alpha) \\ \hline symmetry \\ \hline d_{yz}(\alpha) \\ \hline ext{tabular}$	$\begin{tabular}{ c c c c } \hline Orb. & Occ \\ \hline Symmetry Repres \\ \hline a_{2u}+d_{x^{2}-y^{2}}(\alpha) & 1 \\ \hline d_{z^{2}}(\alpha) & 1 \\ \hline d_{z^{2}}(\alpha) & 0 \\ \hline \\ \hline d_{x^{2}-y^{2}-a_{2u}}(\alpha) & 0 \\ \hline \\$					

Table 3. Selected Molecular orbital energies (eV) and compositions (α -set and β -set) for [Fe(OETPP•)Cl]⁺ (S = 2).

-6.750	$d_{yz}(\beta)$	0	Fe1(1D:yz)(63.98) Cl2(1P:y)(12.67)

Table S4 Calculated	effective	α -set	orbital	interactions	between	P ¹⁻	and	FeCl ²⁺
fragments for [Fe(TP	P•)Cl]⁺, [F	e(OMT	PP•)Cl]	+ and [Fe(OE	ΓPP•)Cl] ⁺			

	[Fe(TPP•)Cl]⁺	[Fe(OMTPP•)Cl]⁺	[Fe(OETPP•)CI]⁺
	(S = 2)	(S = 2)	(S = 2)
$< \mathbf{d}_{x^2-y^2} \mathbf{P}_{\sigma} >$	-0.0754	-0.0497	-0.0454
$< d_{x^2-y^2} a_{2u} >$	-0.0271	-0.0456	-0.0494
$< d_{z^2} P_{\sigma} >$	-0.0051	-0.0093	-0.0125
$< \mathbf{d}_{\mathbf{z}^2} \mathbf{a}_{\mathbf{2u}} >$	-0.0094	-0.0071	-0.0066
$< d_{xz} P_{\pi} >$	-0.0107	-0.0032	-0.0050
$< d_{yz} P_{\pi} >$	-0.0088	-0.0015	-0.0018
$< d_{xy} a_{1u} >$	-0.0003	-0.0002	-0.0022

Fig. S4. (a) The occupied α -set $d_{x^2-y^2}-a_{2u}$ MO, and (b) the unoccupied β -set $d_{x^2-y^2}-a_{2u}$ MO in the ferromagnetic spin state (S = 1) calculation.

Fig. S5. Selected α -set molecular orbitals based on spin-unrestricted calculations show the distinct orbital interactions between the iron $d_x 2_{-y} 2/d_z 2$ and porphyrin a_{2u}/σ orbital for $[Fe(TPP•)Cl]^+$.

Equations for paramagnetic ¹H NMR shifts¹⁻⁵

$$\delta_{obs} = \delta_{dia} + \delta_{iso} \tag{S4}$$

$$\delta_{iso} = \delta_{con} + \delta_{dip} = \delta_{con} + \delta_{dip}^{M.C.} \tag{S5}$$

$$\delta_{con} = \frac{\mu_0 \mu_\beta^2 g_e^2 (S+1)}{9 k_B T} \rho_{\alpha\beta}$$
(S6)

$$\delta_{dip}^{M.C.} = -\frac{\mu_0}{4\pi} (\frac{1}{3N}) (\chi_{\parallel} - \chi_{\perp}) [\frac{(3\cos^2\theta - 1)}{r^3}] = -\frac{\mu_0}{4\pi} (\frac{1}{3N}) (\chi_{\parallel} - \chi_{\perp}) \times G$$
(S7)

In order to estimate the dipolar contribution of paramagnetic shift, the magnetic susceptibility should be estimated by the Van Vleck equation:

$$\mathbb{PP} = \frac{N \sum_{n} (\frac{E_{n}^{(1)2}}{kT} - 2E_{n}^{(2)}) exp^{[m]}(-\frac{E_{n}^{(0)}}{kT})}{\sum_{n} exp^{[m]}(-E_{n}^{(0)}/kT)}$$

Where the total spin Hamiltonian operator is:

$$\hat{H} = g_u \mu_\beta S_u H_u + D[\hat{S}_z^2 - S(S+1)/3] + E(\hat{S}_x^2 - \hat{S}_y^2), \quad u = x, y, z$$

For S = 2 systems with axial symmetry and external magnetic field (B) parallel to molecular z axis:

\hat{H}_{z}	2>	-2>	1>	-1>	0>
<2	$4D+2g_z\mu_\beta H_z$	0	0	0	0
<-2	0	$4D-2g_z\mu_{\beta}H_z$	0	0	0
<1	0	0	$D+g_z\mu_{\beta}H_z$	0	0
<-1	0	0	0	D - $g_z \mu_\beta H_z$	0
<0	0	0	0	0	0

$$= \frac{N \sum_{n} E^{(1)2} exp^{[i0]}(-\frac{E^{(0)}_{n}}{kT})}{kT \sum_{n} exp^{[i0]}(-E^{(0)}_{n}/kT)} = \frac{N[2 \times g_{z}^{2}\mu_{\beta}^{2} \times exp\left(-\frac{D}{kT}\right) + 2 \times 4g_{z}^{2}\mu_{\beta}^{2}}{kT[exp(0) + 2 \times exp\left(-\frac{D}{kT}\right) + 2 \times 4g_{z}^{2}\mu_{\beta}^{2}}$$
$$= \frac{2Ng_{z}^{2}\mu_{\beta}^{2}[exp\left(-\frac{D}{kT}\right) + 4 \times exp\left(-\frac{4D}{kT}\right)]}{kT[1 + 2exp\left(-\frac{D}{kT}\right) + 2exp\left(-\frac{4D}{kT}\right)]} = \frac{2Ng_{z}^{2}\mu_{\beta}^{2}(e^{-x} + 4e^{-4x})}{kT(1 + 2e^{-x} + 2e^{-4x})}$$
, where $x = \frac{D}{kT}$ (S8)

Equation S8 is then expanded by Taylor series:

 χ_z

$$\chi_{z} = \frac{2Ng_{z}^{2}\mu_{\beta}^{2}}{kT} - \frac{14Ng_{z}^{2}\mu_{\beta}^{2}D}{5(kT)^{2}}$$
(S9)

When external magnetic field (B) perpendicular to molecular z axis:

The eigenvalues can be obtained by using of Mathematica program:

$$E_{1} = 4D + \frac{g_{\perp}^{2} \mu_{\beta}^{2} H_{x}^{2}}{3D} \qquad E_{2} = 4D + \frac{g_{\perp}^{2} \mu_{\beta}^{2} H_{x}^{2}}{3D}$$
$$E_{3} = D + \frac{8g_{\perp}^{2} \mu_{\beta}^{2} H_{x}^{2}}{3D} \qquad E_{4} = D - \frac{g_{\perp}^{2} \mu_{\beta}^{2} H_{x}^{2}}{3D} \qquad E_{5} = -\frac{3g_{\perp}^{2} \mu_{\beta}^{2} H_{x}^{2}}{D}$$

The energy values for each energy level are listed as follow:

n	<i>E</i> ⁽⁰⁾	<i>E</i> ⁽¹⁾	<i>E</i> ⁽²⁾
1	4D	0	$\frac{g_x^2 \mu_\beta^2}{3D}$

2	4D	0	$\frac{g_x^2 \mu_\beta^2}{3D}$
3	D	0	$\frac{8g_x^2\mu_\beta^2}{3D}$
4	D	0	$-rac{g_{\chi}^{2}\mu_{eta}^{2}}{3D}$
5	0	0	$-\frac{3g_{\chi}^{2}\mu_{\beta}^{2}}{D}$

$$\chi_{x} = \frac{N \sum_{n} \left(\frac{E_{n}^{(1)2}}{kT} - 2E_{n}^{(2)}\right) exp\left(-\frac{E_{n}^{(0)}}{kT}\right)}{\sum_{n} exp^{(1)(1)}(-E_{n}^{(0)}/kT)} = \frac{N(-\frac{4g_{\perp}^{2}\mu_{\beta}^{2}}{3D}exp\left(-\frac{4D}{kT}\right) - \frac{14g_{\perp}^{2}\mu_{\beta}^{2}}{3D}exp\left(-\frac{D}{kT}\right) + \frac{6g_{\perp}^{2}\mu_{\beta}^{2}}{D})}{1 + 2exp\left(-\frac{D}{kT}\right) + 2exp\left(-\frac{4D}{kT}\right)}$$
$$= \frac{2Ng_{\perp}^{2}\mu_{\beta}^{2}(9 - 7exp\left(-\frac{D}{kT}\right) - 2exp\left(-\frac{4D}{kT}\right))}{3D(1 + 2exp\left(-\frac{D}{kT}\right) + 2exp\left(-\frac{4D}{kT}\right))}$$
$$= \frac{2Ng_{\perp}^{2}\mu_{\beta}^{2}(9 - 7e^{-x} - 2e^{-4x})}{3kTx(1 + 2e^{-x} + 2e^{-4x})}, \text{ where } x = \frac{D}{kT}$$
(S10)

Equation S10 was then expanded by Taylor series:

$$\chi_{x} = \frac{2Ng_{x}^{2}\mu_{\beta}^{2}}{kT} - \frac{7Ng_{x}^{2}\mu_{\beta}^{2}D}{5(kT)^{2}}$$
(S11)

$$\chi_{\parallel} - \chi_{\perp} = \frac{2Ng_{z}^{2}\mu_{\beta}^{2}}{kT} - \frac{14Ng_{z}^{2}\mu_{\beta}^{2}D}{5(kT)^{2}} - \frac{2Ng_{x}^{2}\mu_{\beta}^{2}}{kT} - \frac{7Ng_{x}^{2}\mu_{\beta}^{2}D}{5(kT)^{2}}$$

$$= \frac{2N\mu_{\beta}^{2}(g_{\parallel}^{2} - g_{\perp}^{2})}{kT} - \frac{14N\mu_{\beta}^{2}(g_{\parallel}^{2} + \frac{1}{2}g_{\perp}^{2})D}{5(kT)^{2}} = \frac{21N\mu_{\beta}^{2}g_{e}^{2}D}{5(kT)^{2}}$$
(S12)

Based on equation S12, dipolar contribution can be calculated as follow:

$$\delta_{dip}^{M.C.} = -\frac{\mu_0 (\chi_{\parallel} - \chi_{\perp})}{4\pi \ 3N} \times G = -\frac{\mu_0 9 \mu_\beta^2 g_e^2 GD}{4\pi \ 5 (k_B T)^2} = -0.0567 (\frac{ppm}{cm^{-1}} cm^3) \times G \times D$$
(S13)

Fig. 6. Correlation between the calculated Fermi contact spin densities at each symmetrydistinct hydrogen atom and the experimental isotropic shifts of [Fe(OETPP•)Cl][SbCl₆] with a slope of 4.00×10^{-6} au ppm⁻¹, R² = 0.948.

Fig. S7. Observed Variable-Temperature ¹H NMR (600 MHz) spectra of [Fe(TPP•)Cl][SbCl₆] in CD₂Cl₂.

Fig. S8. NMR spectra of Fe(OETPP)Cl and [Fe(OETPP•)Cl][SbCl₆] in CDCl_{3.}

Fig. S9. ¹H NMR of [Fe(OETPP)Cl][SbCl₆] and [Fe(OETp-CH₃PP)Cl][SbCl₆] in CDCl₃

	Fermi contact spin density, ρ	δ_{con} (ppm)	Geometric factor, G (\times 10 ²¹ cm ⁻³)	$\delta^{M.C.}_{dip}$ (ppm)	δ_{iso} (ppm)	averaged δ_{iso} (ppm)	$\delta_{calc.}({ m DFT})^{ m b}$	δ_{obs} (exp. data) ^b
o-H	0.000096626	22.89	-6.365211194	1.62	24.52	28.87	37.18	36.3
o-H	0.000135605	32.13	-4.308080504	1.10	33.22	-		
m-H	-0.000062796	-14.88	-1.854117305	0.47	-14.40	-12.27	-4.60	-10.8
m-H	-0.000045130	-10.69	-2.203983332	0.56	-10.13	-		
p-H	0.000079223	18.77	-1.565047604	0.40	19.17	19.17	26.96	28.8
CH ₂ -H	0.000173232	41.04	-4.896048401	1.25	42.29	48.55	50.86	42.2
CH ₂ -H	0.000180293	42.71	-4.896048401	1.25	43.96	-		
CH ₂ -H	0.000478239	113.30	-2.377718371	0.61	113.90	-		
CH ₂ -H	-0.000025895	-6.13	-0.650611801	0.17	-5.97	-		
CH ₃ -H	0.000122465	29.01	0.933128859	-0.24	28.77	9.29	9.75	4.0
CH ₃ -H	-0.000001597	-0.38	0.933128859	-0.24	-0.62			
CH ₃ -H	-0.000017765	-4.21	0.933128859	-0.24	-4.45			
CH ₃ -H	-0.000047236	-11.19	0.773139824	-0.20	-11.39			
CH ₃ -H	0.000235195	55.72	0.773139824	-0.20	55.52			
CH ₃ -H	-0.000050289	-11.91	0.773139824	-0.20	-12.11			

Table S5. Theoretically calculated paramagnetic shift of [Fe(OETPP•)Cl][SbCl₆].^a

^a Chemical shifts are in unit of ppm. ^b $\delta_{calc.}(DFT) = \delta_{iso} + \delta_{dia}$ ⁱ H NMR resonances of Zn(OETPP) are employed as diamagnetic reference (δ_{dia}), in which the chemical shifts are 8.31ppm for o-H, 7.67 ppm for m-H, 7.79 ppm for p-H, 2.31 ppm for CH₂-H, and 0.46 ppm for CH₃-H.

Identification code	fesbcl6	
Empirical formula	C70 H82 Cl7 Fe N4 Sb	
Formula weight	1405.15	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 17.8349(9) Å	α=90°.
	b = 22.2509(12) Å	β= 94.594(5)°.
	c = 18.1681(11) Å	$\gamma = 90^{\circ}$.
Volume	7186.7(7) Å ³	
Ζ	4	
Density (calculated)	1.299 Mg/m ³	
Absorption coefficient	0.879 mm ⁻¹	
F(000)	2904	
Crystal size	0.37 x 0.18 x 0.12 mm ³	
Theta range for data collection	2.76 to 29.19°.	
Index ranges	-21<=h<=24, -30<=k<=30, -20)<=l<=24
Reflections collected	37056	
Independent reflections	16651 [R(int) = 0.1025]	
Completeness to theta = 26.00°	99.8 %	
Absorption correction	Semi-empirical from equivalent	nts
Max. and min. transmission	1.00000 and 0.92974	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	16651 / 0 / 748	
Goodness-of-fit on F ²	0.996	
Final R indices [I>2sigma(I)]	R1 = 0.1086, wR2 = 0.2472	
R indices (all data)	R1 = 0.2139, wR2 = 0.3000	
Largest diff. peak and hole	1.731 and -1.301 e.Å ⁻³	

Table S6. Crystal data and structure refinement for [Fe(OET(*p*-CH₃)PP•)CI][SbCl₆].

Fig. S10. ORTEP diagram of [Fe(OET(p-CH₃)PP•)Cl][SbCl₆] with 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Cartesian coordinates of [Fe(TPP•)Cl]⁺ for calculation⁹

Fe	0.000000	0.000000	0.000000
CI	0.000000	0.000000	2.168000
Ν	-2.019000	0.000000	-0.461000
Ν	0.000000	2.024000	-0.407000
Ν	2.019000	0.000000	-0.461000
Ν	0.000000	-2.024000	-0.407000
С	-2.824000	-1.104000	-0.594000
С	-2.824000	1.104000	-0.594000
С	-1.103000	2.821000	-0.170000
С	1.103000	2.821000	-0.170000
С	2.824000	1.104000	-0.594000
С	2.824000	-1.104000	-0.594000
С	1.103000	-2.821000	-0.170000
С	-1.103000	-2.821000	-0.170000
С	-4.164000	-0.683000	-0.919000
С	-4.164000	0.683000	-0.919000
С	-0.692000	4.119000	0.254000
С	0.692000	4.119000	0.254000
С	4.164000	0.683000	-0.919000
С	4.164000	-0.683000	-0.919000
C	0.692000	-4.119000	0.254000
С	-0.692000	-4.119000	0.254000
С	-2.419000	2.419000	-0.358000
C	2.419000	2.419000	-0.358000
C	2.419000	-2.419000	-0.358000
C	-2.419000	-2.419000	-0.358000
C	-3.469000	3.469000	-0.241000
C	3.469000	3.469000	-0.241000
C	3.469000	-3.469000	-0.241000
C	-3.469000	-3.469000	-0.241000
C	-4.537000	3.273000	0.660000
	4.537000	3.273000	0.660000
	4.537000	-3.273000	0.000000
	-4.537000	-3.273000	0.660000
C	-3.410000	4.020000	-1.000000
	3.410000	4.020000	-1.006000
C	3.410000	-4.020000	1.006000
Ĉ	-5.410000	4.020000	-1.000000
C	5 509000	4.250000	0.808000
C C	5,509000	-4.256000	0.808000
C	-5 509000	-4 256000	0.000000
C	-4 400000	5 600000	-0.868000
C	4 400000	5 600000	-0.868000
C C	4 400000	-5 600000	-0.868000
C C	-4 400000	-5 600000	-0.868000
č	-5 437000	5 437000	0.031000
Č	5 437000	5 437000	0.031000
Č	5.437000	-5.437000	0.031000
Č	-5.437000	-5.437000	0.031000
Ĥ	-5.008000	-1.326000	-1.124000
Н	-5.008000	1.326000	-1.124000
Н	-1.336000	4.943000	0.523000
Н	1.336000	4.943000	0.523000
Н	5.008000	1.326000	-1.124000
Н	5.008000	-1.326000	-1.124000

Н	1.336000	-4.943000	0.523000
Н	-1.336000	-4.943000	0.523000
Н	-4.600000	2.360000	1.234000
Н	4.600000	2.360000	1.234000
Н	4.600000	-2.360000	1.234000
Н	-4.600000	-2.360000	1.234000
Н	-2.614000	4.760000	-1.713000
Н	2.614000	4.760000	-1.713000
Н	2.614000	-4.760000	-1.713000
Н	-2.614000	-4.760000	-1.713000
Н	-6.316000	4.119000	1.513000
Н	6.316000	4.119000	1.513000
Н	6.316000	-4.119000	1.513000
Н	-6.316000	-4.119000	1.513000
Н	-4.350000	6.495000	-1.470000
Н	4.350000	6.495000	-1.470000
Н	4.350000	-6.495000	-1.470000
Н	-4.350000	-6.495000	-1.470000
Н	6.179000	-6.179000	0.285000
Н	-6.179000	-6.179000	0.285000
Н	-6.179000	6.179000	0.285000
Н	6.179000	6.179000	0.285000

Cartesian coordinates of Fe(OETPP)CI for calculation¹⁰

Fe	0.000000	0.000000	0.000000
Cl	0.000000	0.000000	2.242000
Ν	-1.968000	0.000000	-0.571000
Ν	0.000000	1.980000	-0.362000
Ν	1.968000	0.000000	-0.571000
Ν	0.000000	-1.980000	-0.362000
С	-2.731000	-1.108000	-0.878000
С	-2.731000	1.108000	-0.878000
С	-1.097000	2.738000	0.00000
С	1.097000	2.738000	0.00000
С	2.731000	1.108000	-0.878000
С	2.731000	-1.108000	-0.878000
С	1.097000	-2.738000	0.00000
С	-1.097000	-2.738000	0.000000
С	-3.942000	-0.673000	-1.565000
С	-3.942000	0.673000	-1.565000
С	-0.678000	3.894000	0.741000
С	0.678000	3.894000	0.741000
С	3.942000	0.673000	-1.565000
С	3.942000	-0.673000	-1.565000
С	0.678000	-3.894000	0.741000
С	-0.678000	-3.894000	0.741000
С	-2.389000	2.389000	-0.434000
С	2.389000	2.389000	-0.434000
С	2.389000	-2.389000	-0.434000
С	-2.389000	-2.389000	-0.434000
С	-4.946000	-1.541000	-2.268000
С	-4.946000	1.541000	-2.268000
С	-1.522000	4.794000	1.580000
С	1.522000	4.794000	1.580000
С	4.946000	1.541000	-2.268000
С	4.946000	-1.541000	-2.268000

С	1.522000	-4.794000	1.580000
С	-1.522000	-4.794000	1.580000
С	-3.435000	3.435000	-0.376000
С	3.435000	3.435000	-0.376000
С	3.435000	-3.435000	-0.376000
С	-3.435000	-3.435000	-0.376000
С	-4.514000	3.292000	0.482000
С	4.514000	3.292000	0.482000
Ċ	4,514000	-3,292000	0.482000
Č	-4.514000	-3,292000	0.482000
Ĉ	-3 365000	4 541000	-1 165000
č	3 365000	4 541000	-1 165000
Ċ.	3 365000	-4 541000	-1 165000
č	-3 365000	-4 541000	-1 165000
ĉ	-5.000000	4.278000	0 541000
ĉ	5 478000	4.278000	0.541000
ĉ	5.478000	4.278000	0.541000
ĉ	5.478000	4 278000	0.541000
ĉ	-3.478000	-4.270000	1 105000
Ĉ	-4.327000	5.500000	-1.105000
	4.327000	5.506000	-1.105000
	4.327000	-5.506000	-1.105000
C	-4.327000	-5.506000	-1.105000
C	-5.360000	5.359000	-0.253000
C	5.360000	5.359000	-0.253000
С	5.360000	-5.359000	-0.253000
С	-5.360000	-5.359000	-0.253000
Н	6.115000	6.130000	-0.205000
Н	4.261000	6.381000	-1.735000
Н	2.536000	4.656000	-1.848000
Н	4.600000	2.412000	1.102000
Н	6.316000	4.184000	1.215000
Н	4.600000	-2.412000	1.102000
Н	6.316000	-4.184000	1.215000
Н	6.115000	-6.130000	-0.205000
Н	4.261000	-6.381000	-1.735000
Н	2.536000	-4.656000	-1.848000
Н	-2.536000	-4.656000	-1.848000
Н	-4.261000	-6.381000	-1.735000
Н	-6.115000	-6.130000	-0.205000
H	-6.316000	-4.184000	1.215000
Н	-4 600000	-2 412000	1 102000
н	-4 600000	2 412000	1 102000
н	-6.316000	4 184000	1 215000
н	-6 115000	6 130000	-0 205000
н	-4.261000	6 381000	-1 735000
Ц	2 536000	4 656000	1 8/8000
\hat{C}	-2.330000	2 100000	3 588000
ĉ	4.400000	-2.100000	-3.566000
	4.400000	2.100000	-3.300000
	1.931000	-4.093000	2.878000
	-1.931000	-4.093000	2.878000
C	1.931000	4.093000	2.878000
C	-1.931000	4.093000	2.878000
C	-4.408000	-2.100000	-3.588000
C	-4.408000	2.100000	-3.588000
Н	2.550000	-4.769000	3.479000
Н	2.504000	-3.189000	2.640000
Н	0.953000	-5.698000	1.823000
Н	1.034000	-3.818000	3.444000
Н	2.423000	-5.069000	1.020000
Н	-1.034000	-3.818000	3.444000
			000

Н	-2.550000	-4.769000	3.479000
Н	-0.953000	-5.698000	1.823000
Н	-2.504000	-3.189000	2.640000
Н	-2.423000	-5.069000	1.020000
Н	-1.034000	3.818000	3.444000
Н	-2.504000	3.189000	2.640000
Н	-2.550000	4.769000	3.479000
Н	-0.953000	5.698000	1.823000
Н	-2.423000	5.069000	1.020000
Н	-5.209000	-2.378000	-1.612000
Н	-3.515000	-2.705000	-3.392000
Н	-4.149000	-1.272000	-4.257000
Н	-5.176000	-2.724000	-4.060000
Н	-5.842000	-0.945000	-2.477000
Н	-5.209000	2.378000	-1.612000
Н	-3.515000	2.705000	-3.392000
Н	-4.149000	1.272000	-4.257000
Н	-5.842000	0.945000	-2.477000
Н	-5.176000	2.724000	-4.060000
Н	1.034000	3.818000	3.444000
Н	2.504000	3.189000	2.640000
Н	2.423000	5.069000	1.020000
Н	0.953000	5.698000	1.823000
Н	2.550000	4.769000	3.479000
Н	4.149000	-1.272000	-4.257000
Н	5.176000	-2.724000	-4.060000
Н	3.515000	-2.705000	-3.392000
Н	5.209000	-2.378000	-1.612000
Н	5.842000	-0.945000	-2.477000
Н	5.842000	0.945000	-2.477000
Н	5.209000	2.378000	-1.612000
Н	4.149000	1.272000	-4.257000
Н	3.515000	2.705000	-3.392000
Н	5.176000	2.724000	-4.060000

Cartesian coordinates of [Fe(OETPP•)CI]⁺ for calculation

Fe	0.000000	0.000000	0.000000
CI	0.000000	-0.000000	-2.217000
Ν	-1.991000	-0.000000	0.403000
Ν	1.991000	0.000000	0.403000
Ν	-0.000100	-1.972000	0.541000
Ν	-0.000100	1.972000	0.541000
С	-2.717000	1.097000	0.001000
С	-2.717000	-1.097000	0.001000
С	2.717000	-1.097000	0.001000
С	2.717000	1.097000	0.001000
С	-1.093000	-2.669000	0.974000
С	1.093000	-2.669000	0.974000
С	1.093000	2.669000	0.974000
С	-1.093000	2.669000	0.974000
С	-2.391000	2.376000	0.486000
С	-2.391000	-2.376000	0.486000
С	2.391000	-2.376000	0.486000
С	2.391000	2.376000	0.486000

С	-3.833000	0.681000	-0.821000
С	-3.833000	-0.681000	-0.821000
С	3.833000	-0.681000	-0.821000
С	3.833000	0.681000	-0.821000
С	-0.682000	-3.748000	1.842000
С	0.682000	-3.748000	1.842000
Ċ	0.682000	3,748000	1.842000
Ĉ	-0.682000	3 748000	1 842000
Ĉ	-4 722000	1 546000	-1 666000
Č	4 722000	1.546000	1 666000
ĉ	4 722000	1.540000	1.666000
	4.722000	-1.540000	-1.000000
	4.722000	1.546000	-1.000000
	-1.558000	-4.569000	2.750000
C	1.558000	-4.569000	2.750000
C	1.558000	4.569000	2.750000
С	-1.558000	4.569000	2.750000
С	-4.028000	2.018000	-2.916000
С	-4.028000	-2.018000	-2.916000
С	4.028000	-2.018000	-2.916000
С	4.028000	2.018000	-2.916000
С	-1.918000	-3.766000	3.972000
С	1.918000	-3.766000	3.972000
С	1.918000	3.766000	3.972000
С	-1.918000	3.766000	3.972000
C	-3.382000	-3.463000	0.440000
Ċ	3,382000	-3,463000	0.440000
Ĉ	3 382000	3 463000	0 440000
č	-3 382000	3 463000	0 440000
C C	-3.057000	-4 633000	-0 210000
C C	3 057000	-4.633000	-0.210000
Ĉ	3.057000	4 633000	0.210000
C C	2.057000	4.033000	-0.210000
	-3.037000	4.033000	-0.210000
	-3.973000	-5.001000	-0.275000
	3.973000	-5.001000	-0.275000
C	3.973000	5.661000	-0.275000
C	-3.973000	5.661000	-0.275000
C	-5.216000	-5.518000	0.311000
С	5.216000	-5.518000	0.311000
С	5.216000	5.518000	0.311000
С	-5.216000	5.518000	0.311000
С	-5.542000	-4.348000	0.961000
С	5.542000	-4.348000	0.961000
С	5.542000	4.348000	0.961000
С	-5.542000	4.348000	0.961000
С	-4.625000	-3.320000	1.025000
С	4.625000	-3.320000	1.025000
С	4.625000	3.320000	1.025000
C	-4.625000	3.320000	1.025000
Ĥ	-5 597000	0.977100	-1 945200
н	-5 597000	-0.977100	-1 945200
н	5 597000	-0.977100	-1 945000
н Ц	5.537000	0.077100	1.045000
	5.597000	2.406500	1 096400
	5.022000	2.400000	1 096400
п 11	-5.022000	-2.400000	
П	5.022000	-2.406500	-1.086400
Н	5.022000	2.406500	-1.086400
Н	-1.028000	-5.460800	3.049900
Н	1.028000	-5.460800	3.049900
Н	1.028000	5.460800	3.049900
Н	-1.028000	5.460800	3.049900

Н	-2.459700	-4.846100	2.224100
Н	2.459700	-4.846100	2.224100
Н	2.459700	4.846100	2.224100
Н	-2.459700	4.846100	2.224100
Н	-4.041000	1.327000	-3.746000
Н	-4.041000	-1.327000	-3.746000
Н	4.041000	-1.327000	-3.746000
Н	4.041000	1.327000	-3.746000
Н	-2.972000	2.131000	-2.721000
Н	-2.972000	-2.131000	-2.721000
Н	2.972000	-2.131000	-2.721000
Н	2.972000	2.131000	-2.721000
Н	-4.310000	3.002000	-3.262000
Н	-4.310000	-3.002000	-3.262000
Н	4.310000	-3.002000	-3.262000
Н	4.310000	3.002000	-3.262000
Н	-2.294000	2,772000	3,782000
Н	2,294000	2,772000	3,782000
H	2.294000	-2.772000	3.782000
Н	-2.294000	-2.772000	3,782000
Н	-2.560000	4.263000	4.684000
H	2.560000	4.263000	4.684000
Н	2.560000	-4.263000	4.684000
Н	-2.560000	-4.263000	4.684000
H	-1.027000	3.574000	4.552000
Н	1.027000	3.574000	4.552000
Н	1.027000	-3.574000	4.552000
Н	-1.027000	-3.574000	4.552000
Н	2.085300	4,744200	-0.668100
Н	-2.085300	4.744200	-0.668100
Н	-2.085300	-4.744200	-0.668100
Н	2.085300	-4.744200	-0.668100
Н	3.717000	6.578000	-0.784800
Н	-3.717000	6.578000	-0.784800
Н	-3.717000	-6.578000	-0.784800
Н	3.717000	-6.578000	-0.784800
Н	5.935000	6.322700	0.261000
Н	-5.935000	6.322700	0.261000
Н	-5.935000	-6.322700	0.261000
Н	5.935000	-6.322700	0.261000
Н	6.513700	4.237000	1.419000
Н	-6.513700	4.237000	1.419000
Н	-6.513700	-4.237000	1.419000
Н	6.513700	-4.237000	1.419000
Н	4.880500	2.402200	1.534000
Н	-4.880500	2.402200	1.534000
Н	-4.880500	-2.402200	1.534000
Н	4.880500	-2.402200	1.534000

Cartesian coordinates of Cu(OETPP•)CIO₄ for calculation¹¹

Cu	0.000000	0.000000	0.000000
0	0.000000	0.000000	2.443000
Ν	-1.968000	0.000000	-0.137000
Ν	0.000000	1.971000	-0.050000
Ν	1.968000	0.000000	-0.137000

Ν	0.000000	-1.971000	-0.050000
С	-2.683000	-1.093000	-0.571000
С	-2.683000	1.093000	-0.571000
С	-1.094000	2.670000	0.418000
С	1.094000	2.670000	0.418000
С	2.683000	1.093000	-0.571000
С	2.683000	-1.093000	-0.571000
С	1.094000	-2.670000	0.418000
С	-1.094000	-2.670000	0.418000
С	-3.793000	-0.679000	-1.396000
С	-3.793000	0.679000	-1.396000
С	-0.680000	3.727000	1.303000
Č	0.680000	3.727000	1.303000
Ĉ	3,793000	0.679000	-1.396000
Ĉ	3 793000	-0 679000	-1 396000
č	0.680000	-3 727000	1 303000
č	-0.680000	-3 727000	1 303000
Č	-2 375000	2 364000	-0.062000
C C	2 375000	2 364000	-0.062000
ĉ	2 375000	-2 364000	-0.062000
C C	2 375000	2 364000	0.062000
Ĉ	-2.373000	4 520000	2 223000
Ĉ	1 474000	4.529000	2.223000
C	1.474000	4.529000	2.223000
C	4.052000	1.556000	-2.254000
	4.052000	-1.556000	-2.254000
	1.474000	-4.529000	2.223000
	-1.474000	-4.529000	2.223000
	-4.652000	-1.556000	-2.254000
C	-4.652000	1.556000	-2.254000
C	-3.422000	3.404000	-0.016000
C	3.422000	3.404000	-0.016000
С	3.422000	-3.404000	-0.016000
C	-3.422000	-3.404000	-0.016000
С	-3.216000	4.618000	-0.618000
С	3.216000	4.618000	-0.618000
С	3.216000	-4.618000	-0.618000
С	-3.216000	-4.618000	-0.618000
С	-4.602000	3.171000	0.632000
С	4.602000	3.171000	0.632000
С	4.602000	-3.171000	0.632000
С	-4.602000	-3.171000	0.632000
С	-4.193000	5.587000	-0.551000
С	4.193000	5.587000	-0.551000
С	4.193000	-5.587000	-0.551000
С	-4.193000	-5.587000	-0.551000
С	-5.555000	-4.144000	0.700000
С	-5.555000	4.144000	0.700000
С	5.555000	4.144000	0.700000
С	5.555000	-4.144000	0.700000
С	-5.341000	5.338000	0.103000
C	5.341000	5.338000	0.103000
Ĉ	5.341000	-5.338000	0.103000
Č	-5.341000	-5.338000	0.103000
Ĥ	5 007000	2 397000	-1 648000
н	5 509000	0.970000	-2 604000
н	5 509000	-0.970000	-2 604000
н	5 007000	-2 397000	-1 648000
C	3 011000	_2 112000	-3 473000
н	4 591000	-2 743000	-4 057000
н	3 557000	-2.7-3000	
11	0.001000	-1.202000	

Н	3.055000	-2.709000	-3.139000
С	3.911000	2.112000	-3.473000
Н	4.591000	2.743000	-4.057000
Н	3.055000	2.709000	-3.139000
Н	3.557000	1.282000	-4.095000
Н	-5.509000	0.970000	-2.604000
Н	-5.007000	2.397000	-1.648000
С	-3.911000	2.112000	-3.473000
Ĥ	-3.055000	2,709000	-3.139000
H	-4.591000	2.743000	-4.057000
Н	-3.557000	1.282000	-4.095000
н	-5.007000	-2 397000	-1 648000
н	-5 509000	-0.970000	-2 604000
C	-3 911000	-2 112000	-3 473000
й	-3.055000	-2 709000	-3 139000
н	-3.557000	-1 282000	-3.133000
Ц	4 501000	2 7/3000	4.057000
	2 205000	4 085000	1 650000
	-2.295000	-4.905000	2 633000
	-0.031000	-5.510000	2.033000
	0.031000	-5.510000	2.033000
	2.295000	-4.900000	1.009000
	-2.074000	-3.743000	3.392000
н	-1.268000	-3.289000	3.979000
н	-2.653000	-4.422000	4.030000
Н	-2.732000	-2.957000	3.004000
C	2.074000	-3.743000	3.392000
Н	2.732000	-2.957000	3.004000
н	2.653000	-4.422000	4.030000
Н	1.268000	-3.289000	3.979000
Н	2.295000	4.985000	1.659000
Н	0.831000	5.316000	2.633000
С	2.074000	3.743000	3.392000
Н	2.732000	2.957000	3.004000
Н	1.268000	3.289000	3.979000
Н	2.653000	4.422000	4.030000
Н	-0.831000	5.316000	2.633000
Н	-2.295000	4.985000	1.659000
С	-2.074000	3.743000	3.392000
Н	-1.268000	3.289000	3.979000
Н	-2.732000	2.957000	3.004000
Н	-2.653000	4.422000	4.030000
Н	-4.035000	-6.560000	-1.030000
Н	-6.114000	-6.114000	0.153000
Н	-6.492000	-3.959000	1.237000
Н	-4.784000	-2.197000	1.100000
Н	-2.279000	-4.817000	-1.150000
Н	-2.279000	4.817000	-1.150000
Н	-4.035000	6.560000	-1.030000
Н	-4.784000	2.197000	1.100000
Н	-6.492000	3.959000	1.237000
Н	-6.114000	6.114000	0.153000
Н	4.784000	2.197000	1.100000
Н	6.492000	3.959000	1.237000
Н	6.114000	6.114000	0.153000
н	4,035000	6,560000	-1.030000
н	2.279000	4.817000	-1.150000
Н	4,784000	-2.197000	1,100000
Н	6,492000	-3.959000	1.237000
Н	6.114000	-6.114000	0.153000
Н	4,035000	-6.560000	-1.030000
••		0.000000	

2.279000	-4.817000	-1.150000
1.147000	1.667000	3.608000
0.483000	-0.288000	4.691000
2.189000	-0.308000	3.105000
0.919000	0.288000	3.487000
	2.279000 1.147000 0.483000 2.189000 0.919000	2.279000-4.8170001.1470001.6670000.483000-0.2880002.189000-0.3080000.9190000.288000

References

- [1] O. Kahn, in *Molecular Magnetism*; VCH: New York, **1993**, pp. 9-134.
- [2] R. J. Kurland, B. R. McGarvey, J. Magn. Reson. 1970, 2, 286-301.
- [3] J. Mispelter, M. Momenteau, J. M. Lhoste, J. Chem. Soc. Dalton. 1981, 1729-1734.
- [4] I. Bertini, C. Luchinat, G. Parigi in *Solution NMR of Paramagnetic Molecules*, Elsevier, Amsterdam, 2001, pp. 1-73.
- J. Mispelter, M. Momenteau, J. M. Lohoste in *Biological Magnetic Resonance*, *Vol. 12* (Eds.: L. J. Berliner, J. Reuben), Plenum Press, New York, **1993**, pp. 299-355.
- [6] M. Nakamura, T. Yamaguchi, Y. Ohgo, *Inorg. Chem.* 1999, 38, 3126-3131.
- [7] M. A. Phillippi, H. M. Goff, J. Am. Chem. Soc. 1982, 104, 6026-6034.
- [8] A. D. Boersma, H. M. Goff, Inorg. Chem. 1984, 23, 1671-1676.
- [9] P. Gans, G. Buisson, E. Duee, J. C. Marchon, B. S. Erler, W. F. Scholz, C. A. Reed, J. Am. Chem. Soc. 1986, 108, 1223-1234.
- [10] R.-J. Cheng, P.-Y. Chen, P.-R. Gau, C.-C. Chen, S.-M. Peng, J. Am. Chem. Soc. 1997, 119, 2563-2569.
- [11] M. K. Renner, K. M. Barkigia, Y. Zhang, C. J. Medforth, K. M. Smith, J. Fajer, J. Am. Chem. Soc. 1994, 116, 8582-8592.