# A "Directed Precursor Self-Assembly" Strategy for Facile Synthesis of Heteropoly Blues: Crystal Structures, Formation Mechanism and Electrons Distribution

## Supporting Information

Yuchao Wang,<sup>a, b</sup> Fengyan Li,<sup>a,\*</sup> Ning Jiang,<sup>a</sup> Xizheng Liu,<sup>a</sup> Lin Xu<sup>a,\*</sup>

<sup>a</sup>Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China <sup>b</sup>School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, PR China

## **Contents:**

- S1. Stability study
- S2. <u>XPS</u>
- S3. Redox titrations and UV-vis spectra
- S4. ESI-MS spectra analyses
- S5. Electron paramagnetic resonance (ESR) spectra
- S6. <u>IR spectra</u>
- S7. X-ray powder diffraction
- S8. Selected bond lengths (Å) and angles (deg) for compounds 1-4
- S9. Thermal ellipsoidal plots for compounds 1-4

# S1. Stability Study



Fig. S1-b. TGA plot of Compound 2.



Fig. S1-c. TGA plot of Compound 3.



Fig. S1-d. TGA plot of Compound 4.



Fig. S1-e. UV/Vis spectra of **1** in aqueous solution at different pH.



Fig. S1-f. UV/Vis spectra of 2 in aqueous solution at different pH.



Fig. S1-g. UV/Vis spectra of **3** in aqueous solution at different pH.



Fig. S1-h. UV/Vis spectra of **4** in aqueous solution at different pH.

### S2. <u>XPS</u>

(1) A. Patterson, T.; C. Carver, J.; E. Leyden, D.; M. Hercules, D. J. Phys. Chem. 1976, 80, 1700–1708.

(2) Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilen-berg, G. E.; Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.

(3) Salvatl Jr, L.; Makovsky, E. L.; Stencel, J. M.; Brown, F. R.; Hercules, D. M. J. Phys. Chem. **1981**, 85, 3700-3707.

(4) Ng, K. T.; Hercules, D. M. J. Phys. Chem. 1976, 80, 2094-2102.



Fig. S2-a. The XPS of W in compound 1.



Fig. S2-b. The XPS of W in compound 3.



Fig. S2-c. The XPS of W in compound 4.



Fig. S2-d. The XPS of Na in compound 4.

#### S3. Redox Titrations

**Redox Titrations:** The cerimetric titration was carried out using a oxidant (0.002 M solution of  $Ce^{IV}$  in 0.5 M of sulphuric acid) which added drop wise in a solution of  $GeW_{10}Mo^{V_2}$  (0.002 M, 5 ml). After addition of 10 mL oxidant, the color of the solution turned from deep blue to colorless along with a characteristic potential jump showed the presence of two single-electrons (see Table 2) which (formally) corresponds to two Mo<sup>V</sup> centres (theoretical value for two e<sup>-</sup> reduced species 10 mL). Using the same method as the above, we can determine the number of Mo<sup>V</sup> in  $GeMo^{V_1}_{0}Mo^{V_2}$  and  $P_2W_{16}Mo^{V_2}$  are two (theoretical value for two e<sup>-</sup> reduced species 10 mL). However, the result of  $P_2W_{12}Mo^{V_1}_2Mo^{V_1}_2Mo^{V_2}_4$  (We thought that the number of Mo<sup>V</sup> in  $P_2W_{12}Mo^{V_1}_2Mo^{V_1}_2Mo^{V_2}_4$  (We thought that the number of Mo<sup>V</sup> in  $P_2W_{12}Mo^{V_1}_2Mo^{V_1}_2Mo^{V_2}_4$  (We thought that the number of Mo<sup>V</sup> in  $P_2W_{12}Mo^{V_1}_2Mo^{V_1}_2Mo^{V_2}_4$  (we constinue the number of Mo<sup>V</sup> in  $P_2W_{12}Mo^{V_1}_2Mo^{V_1}_2Mo^{V_2}_4$ ) was confirmed by a combination of structural studies, chemical analysis, redox titration, and solution UV- VIS spectroscopy).

|   | number of Mo | number of Mo <sup>v</sup> (determined by XPS) | number of Mo <sup>v</sup> (determine by<br>Redox titration) |
|---|--------------|-----------------------------------------------|-------------------------------------------------------------|
| 1 | 2            | 2                                             | 2                                                           |
| 2 | 12           | 2                                             | 2                                                           |
| 3 | 2            | 2                                             | 2                                                           |
| 4 | 6            | 4                                             | 4                                                           |

Table S1. The number of Mo<sup>v</sup> determined by XPS and redox titration in compounds 1-4.

#### UV-vis spectra



Fig. S3-a. UV-vis spectra of compound 1 in water solution within the range of 200-800 nm.



Fig. S3-b. UV-vis spectra of compound **2** in water solution within the range of 200-800 nm.



Fig. S3-c. UV-vis spectra of compound **3** in water solution within the range of 200-800 nm.



Fig. S3-d. UV-vis spectra of compound **4** in water solution within the range of 200-800 nm.

#### S4. ESI-MS Spectra Analyses

Electrospray mass spectra (ESI- MS) were performed with a MICROTOF II FOCUS ESI-TOF bench-top LC/MS system during the reaction. For compound **1**, the mixture was stirred for 10 min at room temperature then the first 100  $\mu$ L aliquot for MS testing was removed. ESI- MS spectra of compounds **3** and **4** were obtained following the procedure described for **1**. The m/z values refer to the highest peak of the ion clusters. All experiments were performed in negative mode by direct infusion with a syringe pump. Standard experimental conditions were as follows: sample concentration 10<sup>-4</sup> mol·L; mobile phase (H<sub>2</sub>O/CH<sub>3</sub>OH, 1:1 for **1** and **4**; H<sub>2</sub>O/CH<sub>3</sub>CN, 1:1 for **3**) flow rate 8 L min<sup>-1</sup>; nebulizing gas N<sub>2</sub>: 40 units flow rate; mass range 50-1500 m/z for **1**, 50-1000 m/z for **3** and **4**; capillary/V 4500 V; collision energy -10 eV; collision cell RF 500vpp; transfer time 120  $\mu$ s, prepulse storage time 10  $\mu$ s; summation 5000; time of acquisition 2 min; active focus off; capillary temperature 100°C.



Fig. S4-a. The negative ion mode ESI-MS spectrum of compound 1 in methanol

| No. | lon                                                                                                                                                                                     | m/z Calculated | m/z Observed |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 1   | $K_2\{(GeW_{10}Mo_2O_{40})(C_2O_4)_2(H_2O)_2\}\cdot CH_3OH^{8-1}$                                                                                                                       | 383.8715       | 383.6658     |
| 2   | $K_{3}\{(GeW_{10}Mo_{2}O_{40})(C_{2}O_{4})_{2}(H_{2}O)_{2}\}^{7-}$                                                                                                                      | 439.7014       | 440.6099     |
| 3   | $H_2Na_2\{(GeW_{10}Mo_2O_{40})(C_2O_4)_2(H_2O)_2\}^{6-1}$                                                                                                                               | 501.5053       | 502.7428     |
| 4   | H <sub>5</sub> {(GeW <sub>10</sub> Mo <sub>2</sub> O <sub>40</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> } <sup>5-</sup>                                                       | 586.0073       | 587.7075     |
| 5   | $K_{5}{(GeW_{10}Mo_{2}O_{40})(C_{2}O_{4})_{2}(H_{2}O)_{2}}\cdot 2H_{2}O^{5-}$                                                                                                           | 638.3716       | 639.6511     |
| 6   | H <sub>6</sub> {(GeW <sub>10</sub> Mo <sub>2</sub> O <sub>40</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> } <sup>4-</sup>                                                       | 732.7611       | 734.6304     |
| 7   | $H_5Na\{(GeW_{10}Mo_2O_{40})(C_2O_4)_2\}^{4-}$                                                                                                                                          | 755.2684       | 754.5971     |
| 8   | Na <sub>4</sub> K (GeW <sub>10</sub> O <sub>36</sub> ) <sup>3-</sup>                                                                                                                    | 873.3901       | 872.5463     |
| 9   | NaK <sub>4</sub> (GeW <sub>11</sub> O <sub>39</sub> ) <sup>3-</sup>                                                                                                                     | 966.6759       | 966.5158     |
| 10  | HNaK <sub>5</sub> {(GeW <sub>10</sub> Mo <sub>2</sub> O <sub>40</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> }·CH <sub>3</sub> OH <sup>3-</sup> | 1070.6202      | 1070.4086    |
| 11  | Na <sub>5</sub> H(GeW <sub>10</sub> O <sub>36</sub> ) <sup>2.</sup>                                                                                                                     | 1302.6021      | 1303.2869    |
| 12  | KNa <sub>3</sub> (GeW <sub>10</sub> Mo <sub>2</sub> O <sub>40</sub> ) <sup>2-</sup>                                                                                                     | 1428.4855      | 1428.2825    |
| 13  | Na{Mo <sub>2</sub> O <sub>4</sub> (C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> }·H <sub>2</sub> O <sup>-</sup>                                         | 512.7713       | 512.6414     |

Table S2-a. Detailed assignment of mass spectral data for compound 1.



Fig. S4-a. The negative ion mode ESI-MS spectrum of compound **3** in acetonitrile.

| No. | lon                                                                                                                                                                                 | m/z        | m/z      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
|     |                                                                                                                                                                                     | Calculated | Observed |
| 1   | Na{(P <sub>2</sub> W <sub>16</sub> Mo <sub>2</sub> O <sub>62</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> } <sup>11-</sup>                  | 402.5117   | 402.7186 |
| 2   | $H_{2}\{(P_{2}W_{16}Mo_{2}O_{62})(C_{2}O_{4})_{2}(H_{2}O)_{2}\}^{10-}$                                                                                                              | 440.6654   | 440.709  |
| 3   | K <sub>2</sub> {(P <sub>2</sub> W <sub>16</sub> Mo <sub>2</sub> O <sub>62</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> H <sub>2</sub> O}·2CH <sub>3</sub> CN <sup>10-</sup> | 454.6608   | 454.7003 |
| 4   | $H_{3}\{(P_{2}W_{16}Mo_{2}O_{62})(C_{2}O_{4})_{2}\}^{9-}$                                                                                                                           | 485.7379   | 485.2414 |
| 5   | $K_{3}\{(P_{2}W_{16}Mo_{2}O_{62})(C_{2}O_{4})_{2}(H_{2}O)_{2}\}^{g_{-}}$                                                                                                            | 502.3922   | 502.5907 |
| 6   | $H_2K_2\{(P_2W_{16}MO_2O_{62})(C_2O_4)_2(H_2O)_2\}^{3-1}$                                                                                                                           | 560.5727   | 560.5445 |
| 7   | $K_4\{(P_2W_{16}Mo_2O_{62})(C_2O_4)_2(H_2O)_2\}\cdot CH_3CN^{8-1}$                                                                                                                  | 575.1900   | 574.6007 |
| 8   | Na <sub>2</sub> H{(P <sub>2</sub> W <sub>16</sub> Mo <sub>2</sub> O <sub>62</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> } <sup>7-</sup>                                    | 618.2321   | 618.5010 |
| 9   | $H_4Na\{(P_2W_{16}Mo_2O_{62})(C_2O_4)_2 \cdot H_2O\}^{7-}$                                                                                                                          | 630.5213   | 630.5627 |
| 10  | $H_{6}\{(P_{2}W_{16}Mo_{2}O_{62})(C_{2}O_{4})_{2}\}^{6-}$                                                                                                                           | 735.9485   | 736.4077 |
| 11  | H3Na <sub>2</sub> K{(P <sub>2</sub> W <sub>16</sub> Mo <sub>2</sub> O <sub>62</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> } <sup>6-</sup>  | 748.7675   | 748.4615 |
| 12  | Na{Mo <sub>2</sub> O <sub>4</sub> (C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> }·H <sub>2</sub> O <sup>-</sup>                                     | 512.7713   | 512.6556 |

Table S2-b. Detailed assignment of mass spectral data for compound **3**.



Fig. S4-b. The negative ion mode ESI-MS spectrum of compound **4** in methanol.

| No. | lon                                                                                                                                                                                                                           | m/z        | m/z      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
|     |                                                                                                                                                                                                                               | Calculated | Observed |
| 1   | $Na_{3}K_{3}\{(P_{2}W_{12} Mo_{2}^{VI}Mo_{4}^{V}O_{62})(C_{2}O_{4})_{6}(H_{2}O)_{6}\}^{16}$                                                                                                                                   | 291.8924   | 291.7212 |
| 2   | Na <sub>7</sub> {(P <sub>2</sub> W <sub>12</sub> Mo <sup>V</sup> <sub>1</sub> Mo <sup>V</sup> <sub>4</sub> O <sub>62</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>6</sub> (H <sub>2</sub> O) <sub>6</sub> } <sup>15-</sup>    | 309.6897   | 309.7011 |
| 3   | $Na_{5}H_{3}\{(P_{2}W_{12}Mo_{2}^{VI}Mo_{4}^{V}O_{62})(C_{2}O_{4})_{6}(H_{2}O)_{6}\}^{14}$                                                                                                                                    | 328.7421   | 328.6819 |
| 4   | $Na_7H_2\{(P_2W_{12}Mo_2^{VI}Mo^{V_4}O_{62})(C_2O_4)_6(H_2O)_6\}^{13}$                                                                                                                                                        | 357.4893   | 357.6906 |
| 5   | $NaK_{8}\{(P_{2}W_{12} Mo_{2}^{VI}Mo_{4}^{V}O_{62})(C_{2}O_{4})_{6}(H_{2}O)_{6}\}^{13-}$                                                                                                                                      | 370.7013   | 370.6517 |
| 6   | NaHK <sub>7</sub> {(P <sub>2</sub> W <sub>12</sub> Mo <sub>2</sub> <sup>VI</sup> Mo <sup>V</sup> <sub>4</sub> O <sub>62</sub> )(C <sub>2</sub> O <sub>4</sub> ) <sub>6</sub> (H <sub>2</sub> O) <sub>6</sub> } <sup>12-</sup> | 382.6991   | 382.6722 |
| 7   | $Na_{3}K_{7}H\{(P_{2}W_{12}Mo_{2}^{VI}Mo_{4}^{V}O_{62})(C_{2}O_{4})_{6}(H_{2}O)_{6}\}^{11-}$                                                                                                                                  | 438.8309   | 438.6225 |
| 8   | $NaKH_{10}\{(P_2W_{12}Mo_2^{VI}Mo_4^VO_{62})(C_2O_4)_6(H_2O)_6\}^{10-1}$                                                                                                                                                      | 454.7379   | 454.6444 |
| 9   | $Na\{Mo_2O_4(C_2O_4)_2(H_2O)_2\}\cdot H_2O^-$                                                                                                                                                                                 | 512.7713   | 512.5954 |
| 10  | $H_{14}\{(P_2W_{12}MO_2^{VI}MO_4^{V}O_{62})(C_2O_4)_6(H_2O)_5\}^{8-1}$                                                                                                                                                        | 560.0645   | 560.4790 |
| 11  | $NaH_{11}K_{2}\{(P_{2}W_{12}Mo_{2}^{VI}Mo^{V}_{4}O_{62})(C_{2}O_{4})_{6}(H_{2}O)_{6}\}^{8-1}$                                                                                                                                 | 574.5526   | 574.5356 |
| 12  | $H_{15}\{(P_2W_{12}MO_2^{VI}MO_4^{V_4}O_{62})(C_2O_4)_6(H_2O)_2\}^{7-1}$                                                                                                                                                      | 632.4989   | 632.4876 |
| 13  | $Na_{13}K_2\{(P_2W_{12} Mo_2^{VI}Mo_4^VO_{62})(C_2O_4)_6(H_2O)_6\}^{7-1}$                                                                                                                                                     | 694.4588   | 694.4090 |
| 14  | $Na_2H_{14}\{(P_2W_{12}Mo_2^{VI}Mo^V_4O_{62})(C_2O_4)_6(H_2O)_3\}^{6-}$                                                                                                                                                       | 748.4123   | 748.3788 |
| 15  | $Na_{13}K_2H\{(P_2W_{12}MO_2^{VI}MO_4^{V}O_{62})(C_2O_4)_6(H_2O)_6\}^{6-1}$                                                                                                                                                   | 810.3699   | 810.2951 |

Table S2-c. Detailed assignment of mass spectral data for compound 4.

### S5. Electron paramagnetic resonance (ESR) spectra



Fig. S5. The ESR spectra for powdered samples of 1-4.



Fig. S6-b. IR spectrum of compound 2.



Fig. S6-c. IR spectrum of compound **3**.



Fig. S6-d. IR spectrum of compound 4.

# S7. X-ray powder diffraction



Fig. S7-a. XRD patterns of compound 1.



Fig. S7-b. XRD patterns of compound **2**.



Fig. S7-c. XRD patterns of compound 3.



Fig. S7-d. XRD patterns of compound 4.

|             |               | . 0 .          |               |               |
|-------------|---------------|----------------|---------------|---------------|
| S8. Selecte | d Bond Length | s (Å) and Angl | les (deg) for | Compounds 1-4 |

| <u>Selected Bond Lengths (Å) and Angles (deg) for Compounds 1</u> |           |            |           |            |           |            |           |  |
|-------------------------------------------------------------------|-----------|------------|-----------|------------|-----------|------------|-----------|--|
| Ge1-06                                                            | 1.707(9)  | W3-O40     | 1.918(10) | W6-O36     | 1.959(10) | W9-O6      | 2.311(9)  |  |
| Ge1-O18                                                           | 1.713(9)  | W3-O11     | 1.925(10) | W6-O17     | 2.299(10) | W10-O29    | 1.696(12) |  |
| Ge1-017                                                           | 1.714(10) | W3-O18     | 2.300(9)  | W7-O35     | 1.716(10) | W10-O30    | 1.914(10) |  |
| Ge1-05                                                            | 1.716(9)  | W4-O1      | 1.721(10) | W7-O37     | 1.892(11) | W10-O19    | 1.918(10) |  |
| W1-O10                                                            | 1.714(10) | W4-O2      | 1.922(9)  | W7-O36     | 1.924(10) | W10-O9     | 1.942(10) |  |
| W1-O25                                                            | 1.906(9)  | W4-O37     | 1.928(12) | W7-O16     | 1.925(10) | W10-O15    | 1.945(10) |  |
| W1-O9                                                             | 1.916(11) | W4-O3      | 1.929(11) | W7-O8      | 1.959(10) | W10-O5     | 2.314(10) |  |
| W1-O26                                                            | 1.936(10) | W4-O11     | 1.936(9)  | W7-O17     | 2.304(9)  | W11-O28    | 1.721(12) |  |
| W1-O13                                                            | 1.937(10) | W4-O18     | 2.307(9)  | W8-O27     | 1.705(12) | W11-O31    | 1.908(11) |  |
| W1-O5                                                             | 2.297(9)  | W5-O24     | 1.692(10) | W8-O30     | 1.911(10) | W11-O19    | 1.914(10) |  |
| W2-O12                                                            | 1.719(10) | W5-O7      | 1.913(11) | W8-O4      | 1.911(10) | W11-O4     | 1.927(10) |  |
| W2-O16                                                            | 1.901(10) | W5-O25     | 1.932(9)  | W8-O3      | 1.931(10) | W11-O20    | 1.931(11) |  |
| W2-O2                                                             | 1.905(9)  | W5-O31     | 1.940(11) | W8-O38     | 1.933(10) | W11-O6     | 2.309(10) |  |
| W2-O15                                                            | 1.920(11) | W5-O23     | 1.942(10) | W8-O18     | 2.308(10) | W12-O32    | 1.729(10) |  |
| W2-O13                                                            | 1.928(10) | W5-O6      | 2.299(9)  | W9-O39     | 1.714(10) | W12-O26    | 1.894(10) |  |
| W2-O5                                                             | 2.295(8)  | W6-O14     | 1.710(11) | W9-O40     | 1.902(10) | W12-O7     | 1.912(10) |  |
| W3-O34                                                            | 1.695(10) | W6-O22     | 1.891(11) | W9-O20     | 1.910(12) | W12-O33    | 1.931(11) |  |
| W3-O38                                                            | 1.905(11) | W6-O21     | 1.924(10) | W9-O22     | 1.921(12) | W12-O8     | 1.931(10) |  |
| W3-O21                                                            | 1.906(10) | W6-O33     | 1.928(11) | W9-O23     | 1.925(10) | W12-O17    | 2.289(9)  |  |
|                                                                   |           |            |           |            |           |            |           |  |
| O18-Ge1-O5                                                        | 109.7(4)  | O28-W11-O6 | 169.8(5)  | W5-O6-W11  | 93.2(3)   | W6-O17-W7  | 93.8(4)   |  |
| O17-Ge1-O5                                                        | 109.1(5)  | O32-W12-O7 | 102.5(5)  | Ge1-O6-W9  | 122.7(5)  | Ge1-O18-W3 | 123.1(5)  |  |
| O10-W1-O25                                                        | 101.2(4)  | W2-O2-W4   | 152.8(6)  | W5-O6-W9   | 93.2(3)   | Ge1-O18-W4 | 123.0(5)  |  |
| 012-W2-016                                                        | 99.6(5)   | W4-O3-W8   | 120.5(5)  | W11-O6-W9  | 92.9(3)   | W3-O18-W4  | 93.4(3)   |  |
| O34-W3-O38                                                        | 101.0(5)  | W8-O4-W11  | 151.4(5)  | W12-O7-W5  | 153.0(6)  | Ge1-O18-W8 | 122.6(5)  |  |
| O37-W4-O3                                                         | 157.7(4)  | Ge1-O5-W2  | 122.9(5)  | W12-O8-W7  | 119.2(5)  | W3-O18-W8  | 93.4(3)   |  |
| O24-W5-O31                                                        | 101.8(5)  | Ge1-O5- W1 | 122.9(5)  | W1-O9-W10  | 120.5(5)  | W4-O18-W8  | 93.1(3)   |  |
| O22-W6-O36                                                        | 158.1(4)  | W2-O5-W1   | 93.9(3)   | W3-O11-W4  | 120.5(5)  | W3-O21-W6  | 152.6(5)  |  |
| O35-W7-O16                                                        | 103.1(5)  | Ge1-O5-W10 | 122.6(5)  | W2-O13-W1  | 120.5(5)  | W6-O22-W9  | 152.8(6)  |  |
| O27-W8-O38                                                        | 100.6(6)  | W2-O5-W10  | 93.2(3)   | W2-O16-W7  | 152.1(6)  | W9-O23-W5  | 120.1(5)  |  |
| O39-W9-O22                                                        | 104.1(5)  | W1- O5-W10 | 93.2(3)   | Ge1-O17-W6 | 122.2(5)  | W1-O25-W5  | 151.6(6)  |  |
| O29-W10-O5                                                        | 169.9(5)  | Ge1-O6-W5  | 123.5(5)  | Ge1-O17-W7 | 122.1(5)  | O6-Ge1-O18 | 109.2(5)  |  |

| Selected Bond Lengths (Å) and Angles (deg) for Compounds 2 |            |             |           |              |             |              |             |  |
|------------------------------------------------------------|------------|-------------|-----------|--------------|-------------|--------------|-------------|--|
| O1-Mo2                                                     | 1.907(12)  | O8-Mo4      | 1.949(12) | O27-Mo2      | 1.879(12)   | O56-Mo1      | 1.655(15)   |  |
| O1-Mo7                                                     | 1.922(13)  | O9 -Ge2     | 1.728(11) | O28-Mo12     | 2.301(11)   | O57-Mo5      | 1.712(15)   |  |
| O2 -Ge2                                                    | 1.755(14)  | O10-Mo6     | 1.681(13) | O28-Mo8      | 2.301(11)   | O58-Mo7      | 1.956(12)   |  |
| O2-Mo7                                                     | 2.261(12)  | O11-Mo11    | 1.894(12) | O29-Mo6      | 1.922(12)   | O59-Mo1      | 1.952(16)   |  |
| O2-Mo11                                                    | 2.276(13)  | O12-Mo12    | 1.695(13) | O29-Mo5      | 1.977(13)   | O60-Mo3      | 1.869(13)   |  |
| O2-Mo2                                                     | 2.329(13)  | O13-Mo12    | 1.937(12) | O30-Mo4      | 1.714(13)   | O60-Mo10     | 1.963(13)   |  |
| O3-Mo5                                                     | 1.917(11)  | O14-Mo11    | 1.899(12) | O31-Mo11     | 2.124(13)   | O61-Mo10     | 1.898(15)   |  |
| O3-Mo16                                                    | 1.950(11)  | O15-Mo7     | 1.924(12) | O31-Mo2      | 2.128(11)   | O62-Mo10     | 1.855(14)   |  |
| O4 -Ge2                                                    | 1.739(13)  | O15-Mo11    | 1.929(12) | O32-Mo7      | 1.682(13)   | O62-Mo9      | 1.966(14)   |  |
| O4-Mo5                                                     | 2.270(12)  | O16-Mo9     | 1.878(13) | O33-Mo11     | 1.695(13)   | O65 -Ge1     | 1.736(13)   |  |
| O4-Mo6                                                     | 2.292(13)  | O18-Mo3     | 2.012(12) | O37-Mo3      | 1.938(15)   | O65-Mo1      | 2.284(18)   |  |
| O4-Mo4                                                     | 2.316(12)  | O19-Mo3     | 1.691(16) | O38-Mo8      | 1.687(12)   | O66-Mo3      | 1.859(14)   |  |
| O5-Mo5                                                     | 1.858(13)  | O22-Mo6     | 1.864(12) | O39-Mo2      | 1.704(13)   | O70 -Ge1     | 1.720(16)   |  |
| O5-Mo7                                                     | 1.945(13)  | O23-Mo6     | 1.863(10) | O45-Mo10     | 1.860(13)   | O71-Mo8      | 1.853(14)   |  |
| O6-Mo2                                                     | 1.870(11)  | O23-Mo8     | 2.001(10) | O45-Mo1      | 1.932(15)   | O71-Mo4      | 1.959(13)   |  |
| O6-Mo4                                                     | 1.925(11)  | O24-Mo12    | 1.930(12) | O46-Mo10     | 1.695(14)   | O78 -Ge1     | 1.735(15)   |  |
| O7-Mo4                                                     | 1.914(12)  | O24-Mo8     | 1.959(14) | O47-Mo9      | 1.913(15)   | O78-Mo9      | 2.279(16)   |  |
| O7-Mo6                                                     | 1.974(12)  | O25-Mo8     | 1.865(12) | O49-Mo12     | 1.932(12)   | O78-Mo10     | 2.317(16)   |  |
| O8-Mo5                                                     | 1.931(13)  | O26-Mo12    | 1.888(12) | O53-Mo9      | 1.870(14)   | O79-Mo1      | 1.908(17)   |  |
|                                                            |            |             |           |              |             |              |             |  |
| O70-Ge1-O78                                                | 109.5(7)   | Mo2-O1-Mo7  | 121.2(7)  | Mo13-O14-Mo  | 11 158.1(7) | Mo12-O28-Mo8 | 3 93.3(4)   |  |
| O70-Ge1-O65                                                | 106.4(7)   | Mo7-O2-Mo11 | 94.9(5)   | Mo7-O15-Mo1  | 1 120.3(6)  | Ge2-O28-Mo19 | 123.1(6)    |  |
| O56-Mo1-O79                                                | 98.6(8)    | Mo7-O2-Mo2  | 93.2(5)   | Mo9-O16-Mo1  | 144.9(8)    | Mo12-O28-Mo1 | 9 93.8(4)   |  |
| O39-Mo2-O27                                                | 101.9(6)   | Mo11-O2-Mo2 | 98.9(5)   | Mo22-O17-Mo  | 17 145.1(9) | Mo8-O28-Mo19 | 93.3(4)     |  |
| O19-Mo3-O66                                                | 103.2(8)   | Ge2-O4-Mo5  | 122.9(6)  | Mo23-O18-Mo3 | 3 116.8(6)  | Mo6-O29-Mo5  | 120.1(6)    |  |
| O30-Mo4-O8                                                 | 100.6(6)   | Ge2-O4-Mo6  | 120.9(7)  | Mo18-O20-Mo1 | 13 117.4(6) | Mo11-O31-Mo2 | 2 110.8(5)  |  |
| O57-Mo5-O5                                                 | 105.0(7)   | Mo5-O4-Mo6  | 95.5(5)   | Mo6-O22-Mo18 | 8 157.4(7)  | Mo18-O34-Mo1 | 6 119.5(6)  |  |
| O29-Mo6-O7                                                 | 84.0(5)    | Ge2-O4-Mo4  | 124.0(6)  | Mo6-O23-Mo8  | 146.9(6)    | Mo3-O37-Mo17 | 125.8(9)    |  |
| O32-Mo7-O1                                                 | 102.1(6)   | Mo5-O4-Mo4  | 93.8(5)   | Mo12-O24-Mo8 | 8 118.8(7)  | Mo21-O41-Mo2 | 20 128.8(8) |  |
| O38-Mo8-O71                                                | 101.5(6)   | Mo6-O4-Mo4  | 91.9(4)   | Mo8-O25-Mo19 | 9 122.1(6)  | Mo21-O43-Mo2 | 23 144.4(8) |  |
| O35-Mo9-O53                                                | 101.0(7)   | Mo5-O5-Mo7  | 155.5(8)  | Mo12-O26-Mo1 | 19 120.2(6) | Mo10-O45-Mo1 | 143.3(9)    |  |
| O46-Mo10-O62                                               | 2 102.1(7) | Mo2-O6-Mo4  | 157.2(7)  | Mo2-O27-Mo19 | 9 147.1(7)  | Mo9-O47-Mo22 | 2 124.3(9)  |  |
| O33-Mo11-O11                                               | 102.1(6)   | Mo4-O7-Mo6  | 116.8(6)  | Ge2-O28-Mo12 | 122.0(6)    | Mo18-O49-Mo1 | 147.1(8)    |  |
| O12-Mo12-O24                                               | 4 98.9(6)  | Mo5-O8-Mo4  | 119.3(7)  | Ge2-O28-Mo8  | 123.2(5)    | Mo16-O50-Mo1 | 13 121.3(6) |  |

| Selected Bond Lengths (Å) and Angles (deg) for Compounds 3 |           |             |           |             |           |             |           |
|------------------------------------------------------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| W1-O42                                                     | 1.703(16) | W5-O23      | 1.946(17) | W10-O51     | 1.922(14) | W15-O29     | 1.889(18) |
| W1-O60                                                     | 1.886(14) | W5-O49      | 2.374(14) | W10-O31     | 1.961(16) | W15-O3      | 1.899(15) |
| W1-O24                                                     | 1.898(18) | W6-O38      | 1.708(16) | W10-O36     | 2.365(15) | W15-O34     | 1.926(17) |
| W1-O62                                                     | 1.918(16) | W6-O35      | 1.914(15) | W11-O41     | 1.717(17) | W15-O30     | 1.934(15) |
| W1-O4                                                      | 1.927(17) | W6-O51      | 1.916(14) | W11-O10     | 1.890(17) | W15-O26     | 2.388(14) |
| W1-O48                                                     | 2.343(15) | W6-O27      | 1.919(17) | W11-O18     | 1.921(17) | W16-O52     | 1.711(18) |
| W2-O39                                                     | 1.716(18) | W6-O36      | 2.360(15) | W11-O54     | 1.929(16) | W16-O31     | 1.893(15) |
| W2-O1                                                      | 1.884(16) | W7-O59      | 1.721(19) | W11-O9      | 1.935(15) | W16-O4      | 1.909(16) |
| W2-O17                                                     | 1.908(17) | W7-O27      | 1.884(17) | W11-O50     | 2.379(14) | W16-O56     | 1.910(16) |
| W2-O58                                                     | 1.913(15) | W7-O10      | 1.921(16) | W12-O13     | 1.733(19) | W16-O55     | 1.926(16) |
| W2-O28                                                     | 1.945(19) | W7-O14      | 1.932(15) | W12-O25     | 1.885(15) | W16-O20     | 2.366(19) |
| W2-O32                                                     | 2.324(14) | W7-O25      | 1.950(16) | W12-O7      | 1.933(16) | W17-O44     | 1.698(15) |
| W3-O46                                                     | 1.73(2)   | W7-O50      | 2.323(15) | W12-O34     | 1.936(15) | W17-O23     | 1.893(17) |
| W3-O11                                                     | 1.846(14) | W8-O45      | 1.698(17) | W12-O2      | 1.944(15) | W17-O54     | 1.903(15) |
| W3-O14                                                     | 1.888(15) | W8-O16      | 1.862(17) | W12-O26     | 2.388(17) | W17-O7      | 1.925(18) |
| W3-O17                                                     | 1.903(17) | W8-O30      | 1.891(16) | W13-O12     | 1.690(15) | W17-O3      | 1.932(15) |
| W3-O2                                                      | 1.904(16) | W8-O22      | 1.908(16) | W13-O8      | 1.860(15) | W17-O26     | 2.397(14) |
| W3-O33                                                     | 2.347(16) | W8-O11      | 1.948(15) | W13-O21     | 1.913(17) | W18-O57     | 1.729(18) |
| W4-O15                                                     | 1.688(14) | W8-O33      | 2.402(14) | W13-O16     | 1.914(16) | W18-O19     | 1.905(18) |
| W4-O22                                                     | 1.885(17) | W9-O47      | 1.735(15) | W13-O29     | 1.957(18) | W18-O53     | 1.914(15) |
| W4-O58                                                     | 1.903(16) | W9-O21      | 1.885(17) | W13-O49     | 2.354(14) | W18-O56     | 1.920(18) |
| W4-O61                                                     | 1.903(16) | W9-O62      | 1.898(17) | W14-O37     | 1.742(18) | W18-O5      | 1.925(14) |
| W4-O19                                                     | 1.945(18) | W9-O61      | 1.898(17) | W14-O28     | 1.882(18) | W18-O20     | 2.401(16) |
| W4-O32                                                     | 2.380(13) | W9-O53      | 1.926(16) | W14-O5      | 1.905(14) | P1-O33      | 1.511(15) |
| W5-O43                                                     | 1.705(16) | W9-O48      | 2.371(14) | W14-O55     | 1.909(17) | P1-O49      | 1.516(16) |
| W5-O9                                                      | 1.879(13) | W10-O40     | 1.715(16) | W14-O35     | 1.913(15) | P1-O26      | 1.551(18) |
| W5-O24                                                     | 1.907(18) | W10-O18     | 1.887(17) | W14-O20     | 2.386(16) | P2-O20      | 1.560(19) |
| W5-O8                                                      | 1.931(14) | W10-O60     | 1.899(14) | W15-O6      | 1.691(16) | P2-O32      | 1.563(16) |
|                                                            |           |             |           |             |           |             |           |
| O42-W1-O60                                                 | 102.7(6)  | O29-W15-O3  | 86.3(7)   | W3-O2-W12   | 150.3(9)  | P2-O20-W16  | 125.8(9)  |
| O39-W2-O1                                                  | 103.0(7)  | O52-W16-O56 | 102.1(8)  | W15-O3-W17  | 123.4(8)  | P2-O20-W14  | 125.3(10) |
| O46-W3-O11                                                 | 99.5(7)   | O23-W17-O3  | 88.3(7)   | W16-O4-W1   | 150.7(11) | W16-O20-W14 | 90.5(6)   |
| O15-W4-O22                                                 | 98.5(7)   | O19-W18-O53 | 86.7(7)   | W14-O5-W18  | 123.8(7)  | P2-O20-W18  | 123.8(8)  |
| O43-W5-O24                                                 | 99.0(8)   | 033-01-049  | 112.3(9)  | W17-O7-W12  | 122.0(9)  | W16-O20-W18 | 90.9(7)   |
| O38-W6-O35                                                 | 96.2(7)   | 033-01-026  | 106.5(9)  | W13-O8-W5   | 124.4(8)  | W14-O20-W18 | 89.8(6)   |
| O27-W7-O14                                                 | 87.7(6)   | 049-01-026  | 106.2(9)  | W5-O9-W11   | 149.4(9)  | W9-O21-W13  | 163.6(10) |
| O16-W8-O22                                                 | 88.2(7)   | 033-01-050  | 110.5(8)  | W11-O10-W7  | 123.5(8)  | W4-O22-W8   | 164.9(10) |
| O21-W9-O62                                                 | 91.7(7)   | 049-01-050  | 113.0(9)  | W3-O11-W8   | 124.0(8)  | W17-O23-W5  | 150.7(8)  |
| O40-W10-O60                                                | 101.6(7)  | 026-01-050  | 107.8(8)  | W3-O14-W7   | 150.9(8)  | W1-O24-W5   | 162.6(9)  |
| O41-W11-O10                                                | 101.3(7)  | 036-02-048  | 112.1(8)  | W8-O16-W13  | 153.6(9)  | W12-O25-W7  | 151.8(9)  |
| O13-W12-O25                                                | 101.7(7)  | 036-02-020  | 105.7(9)  | W3-O17-W2   | 163.3(9)  | P1-O26-W15  | 126.0(7)  |
| O12-W13-O16                                                | 104.2(7)  | 048-02-032  | 111.8(8)  | W10-O18-W11 | 162.5(9)  | P1-O26-W12  | 125.0(8)  |
| O28-W14-O5                                                 | 89.1(7)   | 020-02-032  | 108.4(9)  | W18-O19-W4  | 149.9(9)  | W15-O26-W12 | 90.2(6)   |

| Selected Bond Lengths (Å) and Angles (deg) for Compounds 4 |           |             |           |             |           |             |           |
|------------------------------------------------------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| W1-O50                                                     | 1.709(10) | W7-O60      | 2.365(11) | W12-O96     | 1.906(11) | W3-074      | 2.380(10) |
| W1-O38                                                     | 1.898(9)  | W8-O81      | 1.726(11) | W12-O58     | 2.367(9)  | W16-O63     | 1.889(9)  |
| W1-O39                                                     | 1.902(11) | W8-O46      | 1.893(10) | W13-O11     | 1.707(11) | W4-O95      | 1.714(11) |
| W1-O41                                                     | 1.907(11) | W8-O12      | 1.897(10) | W13-O17     | 1.852(9)  | W4-O97      | 1.883(12) |
| W1-O8                                                      | 1.923(9)  | W8-O49      | 1.903(11) | W13-O20     | 1.887(10) | W4-O25      | 1.903(11) |
| W1-O35                                                     | 2.334(10) | W8-O10      | 1.964(10) | W13-O65     | 1.918(10) | W4-O98      | 1.908(10) |
| W2-O45                                                     | 1.699(10) | W8-075      | 2.332(11) | W13-O37     | 1.972(10) | W4-O96      | 1.939(11) |
| W2-O38                                                     | 1.883(9)  | W9-O32      | 1.706(12) | W13-O4      | 2.339(10) | W4-O77      | 2.350(9)  |
| W2-O41                                                     | 1.891(10) | W9-O14      | 1.877(10) | W10-O57     | 2.337(11) | W5-O29      | 1.684(11) |
| W2-O20                                                     | 1.937(10) | W9-O90      | 1.913(11) | W14-O62     | 1.707(11) | W5-O76      | 1.874(12) |
| W2-O31                                                     | 1.954(10) | W9-O91      | 1.913(11) | W14-O80     | 1.864(11) | W5-O98      | 1.893(10) |
| W2-O4                                                      | 2.362(10) | W9-O18      | 1.968(10) | W11-O77     | 2.355(10) | W5-O91      | 1.923(11) |
| W14-O37                                                    | 1.891(11) | W9-O73      | 2.348(11) | W14-O1      | 1.945(11) | W11-O47     | 1.695(11) |
| W3-O56                                                     | 1.765(11) | W10-O48     | 1.683(12) | W14-O59     | 1.962(10) | W11-O46     | 1.894(10) |
| W3-O8                                                      | 1.909(9)  | W10-O89     | 1.872(11) | W14-O74     | 2.383(10) | W11-O14     | 1.908(11) |
| W3-O31                                                     | 1.911(11) | W10-O90     | 1.875(10) | W15-O40     | 1.674(12) | W11-O25     | 1.931(11) |
| W3-O59                                                     | 1.925(11) | W10-O12     | 1.902(10) | W15-O16     | 1.883(10) | W11-O78     | 1.937(11) |
| W3-O3                                                      | 1.926(11) | W10-O88     | 1.930(11) | W15-O39     | 1.917(11) | W16-O24     | 1.919(11) |
| W15-O35                                                    | 2.358(10) | -W15-O9     | 1.966(9)  | W15-O17     | 1.936(9)  | W16-O80     | 1.978(10) |
| W16-O43                                                    | 2.353(10) | W17-O44     | 1.732(11) | W17-O68     | 1.902(11) | W17-O78     | 1.916(11) |
| P1-O77                                                     | 1.520(11) | P1-O58      | 1.587(10) | P2-O73      | 1.534(11) | P3-O35      | 1.533(10) |
| P1-O28                                                     | 1.537(11) | P2-O57      | 1.529(11) | P2-O92      | 1.589(11) | P3-O4       | 1.537(11) |
| P1-O75                                                     | 1.559(11) | P2-O60      | 1.530(11) | P3-O43      | 1.524(10) | P3-O74      | 1.573(10) |
| W17-O52                                                    | 1.933(10) | W18-O2      | 1.679(12) | W18-O9      | 1.878(10) | W18-O3      | 1.966(10) |
| W17-O58                                                    | 2.384(10) | W18-O22     | 1.865(11) | W18-O1      | 1.903(11) | W18-O74     | 2.385(11) |
| O1-Mo14                                                    | 1.945(11) | O4-W2       | 2.362(10) | O31-W2      | 1.954(10) | O41-W2      | 1.891(10) |
| O1-W14                                                     | 1.945(11) | O4-Mo2      | 2.362(10) | O31-Na1     | 2.641(14) | O44-Na1     | 2.482(15) |
| O4-Mo13                                                    | 2.339(10) | O20-Na1     | 2.711(13) | O37-Na1     | 2.721(13) | O59-Mo14    | 1.962(10) |
| O4-W13                                                     | 2.339(10) | O31-Mo2     | 1.954(10) | O41-Mo2     | 1.891(10) | O59-W14     | 1.962(10) |
|                                                            |           |             |           |             |           |             |           |
| O50-W1-O38                                                 | 99.0(5)   | O11-W13-O17 | 98.7(5)   | O57-P2-O60  | 111.3(6)  | Mo13-O4-W2  | 90.9(3)   |
| O45-W2-O38                                                 | 98.0(5)   | O62-W14-O80 | 102.4(5)  | O57-P2-O73  | 111.0(6)  | W13-O4-W2   | 90.9(3)   |
| O56-W3-O8                                                  | 102.7(5)  | O40-W15-O39 | 97.9(5)   | O60-P2-O73  | 113.6(6)  | P3-O4 Mo2   | 127.7(6)  |
| O95-W4-O97                                                 | 102.2(5)  | O55-W16-O24 | 100.7(5)  | O57-P2-O92  | 105.4(6)  | Mo13-O4 Mo2 | 90.9(3)   |
| O29-W5-O98                                                 | 98.0(5)   | O10-W17-O78 | 86.7(5)   | O60-P2-O92  | 107.9(6)  | W3-O8-W1    | 152.1(6)  |
| O26-W6-O23                                                 | 100.5(5)  | O9-W18-O74  | 84.8(4)   | O73-P2-O92  | 107.1(6)  | W18-O9-W15  | 148.5(6)  |
| O64-W7-O86                                                 | 101.3(5)  | O77-P1-O28  | 113.0(6)  | W18-O1 Mo14 | 124.2(5)  | W17-O10-W8  | 150.2(7)  |
| O81-W8-O12                                                 | 99.7(5)   | O77-P1-O75  | 112.6(6)  | W18-O1-W14  | 124.2(5)  | W8-O12-W10  | 163.5(6)  |
| O32-W9-O14                                                 | 98.2(5)   | O28-P1-O75  | 110.7(6)  | P3-O4-W2    | 127.7(6)  | W6-O13-W7   | 165.1(7)  |
| O12-W10-O88                                                | 163.9(5)  | O77-P1-O58  | 107.4(5)  | W3-O3-W18   | 121.0(5)  | W9-O14-W11  | 162.4(7)  |
| O47-W11-O25                                                | 99.9(5)   | O28-P1-O58  | 105.4(6)  | P3-O4 Mo13  | 129.2(5)  | W15-O16-W19 | 152.7(6)  |
| O6-W12-O19                                                 | 89.7(5)   | O75-P1-O58  | 107.3(6)  | P3-O4-W13   | 129.2(5)  | W13-O17-W15 | 162.9(6)  |

## S9. Thermal ellipsoidal plots for compounds 1-4



## Thermal ellipsoidal plot for compound 1

## Thermal ellipsoidal plot for compound 2



## Thermal ellipsoidal plot for compound 3

Datablock 3\_ - ellipsoid plot



## Thermal ellipsoidal plot for compound 4

Datablock 4\_ - ellipsoid plot

