Electronic Supplementary Information

The stability of group 10 metal POCOP pincer complexes:

decomposition/reconstruction pathways of the pincer backbone

Bula Cao,^a Yazhou Ding,^a Fei Fang,^a Jiarui Chang,^a Jie Zhang,^{*a} Shujun Li^a and Xuenian Chen^{*ab}

Synthesis and characterization of [2,6-(ⁱ Pr ₂ PO) ₂ C ₆ H ₃]PtI	.1
Table S1: Summary of crystal data and structure refinement for complexes 2a, 2c and 3b	1
Table S2: Summary of crystal data and structure refinement for complexes 3c , 5a and 6a	2
Fig. S1: Molecular image of Pd(II)(ⁱ Pr ₂ POH) ₂ (1,2-S ₂ - <i>o</i> -carborane)	.2
Fig. S2: ³¹ P{ ¹ H} NMR spectra of the reaction of 4a with ⁿ BuLi	. 3
Fig. S3-S18: Selected NMR spectra of the new complexes obtained in this work	11

^aHenan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. E-mail: jie.zhang@htu.edu.cn, xnchen@htu.edu.cn.

^bCollege of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou, Henan 450001, China.

Synthesis and characterization of [2,6-(ⁱPr₂PO)₂C₆H₃]PtI

A mixture of $[2,6-({}^{i}Pr_{2}PO)_{2}C_{6}H_{3}]PtCl (0.25 mmol)$, THF (5 mL), methanol (5 mL) and NaI (1 mmol) was stirred at room temperature in a flask for 6 h. Solvents in the reaction mixture were then removed under vacuum and the resulting residue was extracted with toluene. Removal of toluene from the combined extractions followed by washing with hexanes produced $[2,6-({}^{i}Pr_{2}PO)_{2}C_{6}H_{3}]PtI$ as a light yellow solid (80%). ¹H NMR (600 MHz, CDCl₃, δ): 7.01 (t, 1H, Ar*H*, $J_{H-H} = 8.1$ Hz), 6.58 (d, 2H, Ar*H*, $J_{H-H} = 8.1$ Hz), 2.63–2.70 (m, 4H, C*H*(CH₃)₂), 1.12–1.40 (m, 24H, CH(CH₃)₂). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 164.4 (t, Ar*C*, $J_{C-P} = 6.2$ Hz), 126.9 (s, Ar*C*), 122.7 (s, Ar*C*), 105.5 (t, Ar*C*, $J_{C-P} = 6.2$ Hz), 29.5–29.9 (m, *C*H(CH₃)₂), 17.7–17.8 (m, CH(CH₃)₂), 16.7 (s, Pt satellites, CH(CH₃)₂, $J_{C-Pt} = 20.7$ Hz). ³¹P{¹H} NMR (243 MHz, CDCl₃, δ): 177.3 (s, Pt satellites, $J_{P-Pt} = 2977$ Hz).

Complex	2a	2c	3b
Empirical formula	$C_{24}H_{36}O_2P_2Ni$	$C_{24}H_{36}O_2P_2Pt$	$C_{20}H_{42}B_{10}O_2P_2Pd$
Formula weight	477.18	613.56	590.97
Temp, K	170	295	294
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	$P2_1/m$	$P2_1/m$	Cmce
<i>a</i> , Å	8.3415(1)	8.4272(3)	13.2661(2)
b, Å	16.5817(3)	16.7958(4)	15.3835(2)
<i>c</i> , Å	9.2895(1)	9.4851(3)	28.9916(3)
α()	90	90	90
β ()	112.390(2)	112.887(4)	90
γ(⁹	90	90	90
Volume, Å ³	1188.02(3)	1236.84(7)	5916.58(13)
Z	2	2	8
$d_{\rm calc}$, g cm ⁻³	1.334	1.647	1.327
λ, Å	1.54184	0.71073	1.54184
μ , mm ⁻¹	2.577	5.819	6.194
No. of data collected	9944	11328	11829
No. of unique data	2379	3043	2976
R _{int}	0.0355	0.0339	0.0432
Goodness-of-fit on F^2	1.104	1.061	1.071
R_1 , w R_2 ($I > 2\sigma(I)$)	0.0397, 0.1024	0.0292, 0.0539	0.0354, 0.0877
R_1 , w R_2 (all data)	0.0408, 0.1037	0.0386, 0.0581	0.0377, 0.0889

Table S1. Summary of crystal data and structure refinement for complexes 2a, 2c and 3b

Complex	3c	5a	6a
Empirical formula	$C_{20}H_{42}B_{10}O_2P_2Pt$	$C_{38}H_{72}B_{10}O_4P_4S_2Ni_2$	$C_{16}H_{48}B_{20}P_2S_2Ni$
Formula weight	679.66	1006.47	641.51
Temp, K	170	295	150
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Cmce	Pbcn	$P2_1/c$
<i>a</i> , Å	13.1407(2)	18.7762(6)	11.4737(2)
b, Å	15.2729(2)	15.5899(5)	9.9192(2)
<i>c</i> , Å	28.7118(3)	17.6800(6)	14.6100(3)
α()	90	90	90
β()	90	90	100.711(2)
γ()	90	90	90
Volume, Å ³	5762.36(13)	5175.3(3)	1633.79(6)
Z	8	4	2
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.567	1.292	1.304
λ, Å	1.54184	1.54184	1.54184
μ , mm ⁻¹	10.275	0.968	3.031
No. of data collected	12332	24457	9910
No. of unique data	2940	5072	3179
R _{int}	0.0304	0.0408	0.0238
Goodness-of-fit on F^2	1.042	1.133	1.043
R_1 , w R_2 ($I > 2\sigma(I)$)	0.0230, 0.0531	0.0529, 0.1179	0.0257, 0.0631
R_1 , w R_2 (all data)	0.0266, 0.0553	0.0770, 0.1318	0.0310, 0.0659

Table S2. Summary of crystal data and structure refinement for complexes 3c, 5a and 6a

Selected bond lengths (Å) and angles (°): Pd1-S1, 2.379(2); Pd1-S2, 2.3852(19); Pd1-P1, 2.276(2); Pd1-P2, 2.2863(19); P1-O1, 1.575(7); P2-O2, 1.553(6); C1-C2, 1.658(10); P1-Pd1-P2, 93.21(7); P1-Pd1-S1, 89.43(8); S1-Pd1-S2, 87.84(7); P2-Pd1-S2, 89.48(7); S1-Pd1-P2, 177.13(8); S2-Pd1-P1, 176.75(8).

Fig. S2 ³¹P{¹H} NMR spectra of the reaction of **4a** with 1 equiv of ⁿBuLi in toluene- d_8 .

Fig. S3 ¹H NMR spectrum of complex 6a (600 MHz, toluene- d_8)

Fig. S5 ¹H NMR spectrum of complex **2a** (600 MHz, benzene- d_6)

Fig. S7 ³¹P{¹H} NMR spectrum of complex **2a** (243 MHz, benzene- d_6)

Fig. S9 $^{13}C{^{1}H}$ NMR spectrum of complex 2c (101 MHz, CDCl₃)

Fig. S11 ¹H NMR spectrum of complex **3b** (600 MHz, benzene- d_6)

Fig. S13 ${}^{31}P{}^{1}H$ NMR spectrum of complex **3b** (243 MHz, benzene- d_6)

Fig. S15 ¹H NMR spectrum of complex **4a** (600 MHz, benzene- d_6)

Fig. S17 ¹H NMR spectrum of complex 5a (600 MHz, CDCl₃)

