Supplementary Information

Comprehensively understanding the steric hindrance effect on coordination sphere of $\mathbf{P b}^{\mathbf{2 +}}$ ion and photophysical natures of two luminescent $\mathrm{Pb}(\mathrm{II})$-coordination polymers

Xiao-Shuo Wu, ${ }^{\text {a }}$ Yue-Rou Tang ${ }^{\text {b }}$, Jian-Lan Liu, ${ }^{* a}$ Lifeng Wang, ${ }^{\text {c }}$ Xiao-Ming Ren*a,d

${ }^{\text {a }}$ State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
${ }^{\mathrm{b}}$ American Division, Nanjing Jinling High school, Nanjing 210009, PR China
${ }^{\text {c }}$ Institute for Frontier Materials (IFM), Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
${ }^{d}$ State Key Laboratory of Coordination Chemistry, Nanjing University 210023, P. R. China

Tel: +86-25-58139476

E-mail: xmren@njtech.edu.cn

Contents

Table S1: Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in coordination polyhedra of $\mathbf{1}$.
Table S2: Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in coordination polyhedra of $\mathbf{2}$.
Fig. S1: IR spectrum of $\mathbf{1}$: the sharp bands at 3443 and $3313 \mathrm{~cm}^{-1}$ are attributed to the $v_{\text {asymmetric }}$ and $v_{\text {symmetric }}$ stretching vibrations of $\mathrm{N}-\mathrm{H}$ in $-\mathrm{NH}_{2}$ groups, respectively. The bands at $1610,1569,1534$ and $1462 \mathrm{~cm}^{-1}$ correspond to the stretching vibrations of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds in pyridyl ring and the $v_{\text {asymmetric }}$ stretching vibrations of carboxylate groups. The intense band at $1385 \mathrm{~cm}^{-1}$ is attributed to the $v_{\text {symmetric }}$ stretching vibrations of carboxylate groups.

Fig. S2: IR spectrum of 2: the broad bands at 3450 and $3168 \mathrm{~cm}^{-1}$ are caused by the $\mathrm{O}-\mathrm{H}$ stretching vibrations in the coordinated $\mathrm{H}_{2} \mathrm{O}$ and the hydroxyl groups forming the hydrogen bonds, respectively. The bands at 1603, 1580, 1545 and $1462 \mathrm{~cm}^{-1}$ correspond to the stretching vibrations of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds in quinoline ring and the $v_{\text {asymmetric }}$ stretching vibrations of carboxylate groups. The symmetric stretching vibrations of carboxylate groups appeared at $1402 \mathrm{~cm}^{-1}$. These IR spectra are in good agreement with the results of X-ray single crystal structure analysis and the coordination modes of ligands.

Fig. S3: Connection fashion of 2-anc ligands in 1.

Fig. S4: Intramolecular hydrogen bonding interactions in 2.
Fig. S5: Connection fashion of 3-qlc ligands in 2.
Fig. S6: PXRD patterns of $\mathbf{1}$ immersed in water for 24 hours.

Fig. S7: Images of 2-aminonicotinic acid under (a) daylight and (b) UV light.
Fig. S8: Images of crystals of $\mathbf{1}$ under (a) daylight and (b) UV light.
Fig. S9: Images of 3-quinolinecarboxylic acid under (a) daylight and (b) UV light.

Fig. S10: Images of crystals of 2 under (a) daylight and (b) UV light.
Fig. S11: Emission decay curves at room temperature upon pulsed excitation at 360
nm and the main emission peak at 410 nm of $\mathbf{1}$.

Fig. S12: Emission decay curves at room temperature upon pulsed excitation at 370 nm and the main emission peak at 548 nm of $\mathbf{1}$.

Fig. S13: Emission decay curves at room temperature upon pulsed excitation at 360 nm and the main emission peak at 430 nm of $\mathbf{2}$.

Fig. S14: Emission decay curves at room temperature upon pulsed excitation at 360 nm and the main emission peak at 460 nm of 2-aminonicotinic acid.

Fig. S15: Emission decay curves at room temperature upon pulsed excitation at 360 nm and the main emission peak at 430 nm of 3-quinolinecarboxylic acid.

Fig. S16: (a) Close-up view of several highest occupied band and the lowest unoccupied bands in energy band structure of 1 (b) Plots of DOS and PDOS of Pb, O, N and C atoms in 1.

Fig. S17: (a) Close-up view of several highest occupied band and the lowest unoccupied bands in energy band structure of 2 (b) Plots of DOS and PDOS of Pb, O, N and C atoms in 2.

Table S1: Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in coordination polyhedra of $\mathbf{1}$

$\mathrm{Pb} 1-\mathrm{O} 1$	2.515(3)	$\mathrm{Pb} 1-\mathrm{O} 2$	2.662(3)	$\mathrm{Pb} 1-\mathrm{N} 1$	2.716(3)
Pb1-O1\#1	2.515(3)	Pb1-O2\#1	2.662(3)	Pb1-N1\#1	2.716(3)
O1-Pb1-O1\#1	73.92(14)	O1-Pb1-O2\#1	50.33(10)	$\mathrm{O} 1 \# 1-\mathrm{Pb} 1-\mathrm{O} 2 \# 1$	118.91(10)
O1-Pb1-O2	$\begin{aligned} & 118.91(10 \\ &) \end{aligned}$	$\mathrm{O} 1 \# 1-\mathrm{Pb} 1-\mathrm{O} 2$	50.33(10)	$\mathrm{O} 2 \# 1-\mathrm{Pb} 1-\mathrm{O} 2$	168.87(13)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 1$	83.38(11)	O1\#1-Pb1-N1	89.15(11)	$\mathrm{O} 2 \# 1-\mathrm{Pb} 1-\mathrm{N} 1$	105.00(10)
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{N} 1$	74.06(10)	O1-Pb1-N1\#1	89.15(11)	O1\#1-Pb1-N1\#1	83.38(11)
O2\#1-Pb1-N1\#1	74.06(10)	O2-Pb1-N1\#1	105.00(10)	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 1 \# 1$	170.67(16)

Symmetry transformations used to generate equivalent atoms: $\# 1=-x+3 / 2,-y+1 / 2, z$

Table S2: Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in coordination polyhedra of 2

$\mathrm{Pb} 1-\mathrm{O} 2$	$2.570(4)$	$\mathrm{Pb} 1-\mathrm{O}(4) \# 1$	$2.596(4)$	$\mathrm{Pb} 1-\mathrm{O} 4$	$2.610(5)$

$\mathrm{Pb} 1-\mathrm{O} 1$	$2.611(4)$	$\mathrm{Pb} 1-\mathrm{O} 3$	$2.647(5)$	$\mathrm{Pb} 1-\mathrm{O} 2 \# 2$	$2.649(4)$
$\mathrm{Pb} 1-\mathrm{O} 5$	$2.669(5)$	$\mathrm{Pb} 1-\mathrm{O} 6$	$2.716(6)$	$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 1$	$50.20(13)$
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 4 \# 1$	$71.04(14)$	$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 4$	$105.32(18)$	$\mathrm{O} 4 \# 1-\mathrm{Pb} 1-\mathrm{O} 4$	$118.03(17)$
$\mathrm{O} 4 \# 1-\mathrm{Pb} 1-\mathrm{O} 1$	$121.23(14)$	$\mathrm{O} 4 \# 1-\mathrm{Pb} 1-\mathrm{O} 2 \# 2$	$160.12(17)$	$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 2 \# 2$	$126.52(17)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 3$	$91.21(19)$	$\mathrm{O} 4-\mathrm{Pb} 1-\mathrm{O} 3$	49.2414	$\mathrm{O} 4 \# 1-\mathrm{Pb} 1-\mathrm{O} 3$	$71.53(16)$
$\mathrm{O} 4-\mathrm{Pb} 1-\mathrm{O} 1$	$80.94(16)$	$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 3$	$75.88(17)$	$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 2 \# 2$	$77.09(15)$
$\mathrm{O} 4-\mathrm{Pb} 1-\mathrm{O} 2 \# 2$	$69.60(14)$	$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{O} 2 \# 2$	$118.83(13)$	$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 5$	$84.11(17)$
$\mathrm{O} 4-\mathrm{Pb} 1-\mathrm{O} 6$	$74.24(19$	$\mathrm{O} 4 \# 1-\mathrm{Pb} 1-\mathrm{O} 6$	$91.17(15)$	$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 6$	$159.88(18)$
$\mathrm{O} 2 \# 2-\mathrm{Pb} 1-\mathrm{O} 5$	$91.06(14)$	$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{O} 5$	$149.96(14)$	$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 5$	$92.94(17)$
$\mathrm{O} 4-\mathrm{Pb} 1-\mathrm{O} 5$	$160.54(15)$	$\mathrm{O} 4 \# 1-\mathrm{Pb} 1-\mathrm{O} 5$	$80.96(16)$	$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 6$	$146.04(15)$
$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{O} 6$	$89.9(2)$	$\mathrm{O} 2 \# 2-\mathrm{Pb} 1-\mathrm{O} 6$	$72.76(17)$	$\mathrm{O} 5-\mathrm{Pb} 1-\mathrm{O} 6$	$102.8(2)$

Symmetry transformations used to generate equivalent atoms: $\# 1=\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}-1 / 2 ; \# 2=\mathrm{x},-$ $y+1 / 2, z+1 / 2$

Fig. S1: IR spectrum of $\mathbf{1}$: the sharp bands at 3443 and $3313 \mathrm{~cm}^{-1}$ are attributed to the $v_{\text {asymmetric }}$ and $v_{\text {symmetric }}$ stretching vibrations of $\mathrm{N}-\mathrm{H}$ in $-\mathrm{NH}_{2}$ groups, respectively. The
bands at $1610,1569,1534$ and $1462 \mathrm{~cm}^{-1}$ correspond to the stretching vibrations of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds in pyridyl ring and the $v_{\text {asymmetric }}$ stretching vibrations of carboxylate groups. The intense band at $1385 \mathrm{~cm}^{-1}$ is attributed to the $v_{\text {symmetric }}$ stretching vibrations of carboxylate groups.

Fig. S2: IR spectrum of 2: the broad bands at 3450 and $3168 \mathrm{~cm}^{-1}$ are caused by the O-H stretching vibrations in the coordinated $\mathrm{H}_{2} \mathrm{O}$ and the hydroxyl groups forming the hydrogen bonds, respectively. The bands at 1603, 1580, 1545 and $1462 \mathrm{~cm}^{-1}$ correspond to the stretching vibrations of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds in quinoline ring and the $v_{\text {asymmetric }}$ stretching vibrations of carboxylate groups. The symmetric stretching vibrations of carboxylate groups appeared at $1402 \mathrm{~cm}^{-1}$. These IR spectra are in good agreement with the results of X-ray single crystal structure analysis and the coordination modes of ligands.

Fig. S3: Connection fashion of 2-anc ligands in $\mathbf{1}$.

Fig. S4: Intramolecular hydrogen bonding interactions in 2.

Fig. S5: Connection fashion of 3-qlc ligands in 2.

Fig. S6: PXRD patterns of $\mathbf{1}$ immersed in water for 24 hours.

Fig. S7: Images of 2-aminonicotinic acid under (a) daylight and (b) UV light.

Fig. S8: Images of crystals of $\mathbf{1}$ under (a) daylight and (b) UV light.

Fig. S9: Images of 3-quinolinecarboxylic acid under (a) daylight and (b) UV light.

Fig. S10: Images of crystals of 2 under (a) daylight and (b) UV light.

Fig. S11: Emission decay curves at room temperature upon pulsed excitation at 360 nm and the main emission peak at 410 nm of $\mathbf{1}$.

Fig. S12: Emission decay curves at room temperature upon pulsed excitation at 370 nm and the main emission peak at 548 nm of $\mathbf{1}$.

Fig. S13: Emission decay curves at room temperature upon pulsed excitation at 360 nm and the main emission peak at 430 nm of 2 .

Fig. S14: Emission decay curves at room temperature upon pulsed excitation at 360 nm and the main emission peak at 460 nm of 2-aminonicotinic acid.

Fig. S15: Emission decay curves at room temperature upon pulsed excitation at 360 nm and the main emission peak at 430 nm of 3-quinolinecarboxylic acid.

Fig. S16: (a) Close-up view of several highest occupied band and the lowest unoccupied bands in energy band structure of 1. (b) Plots of DOS and PDOS of Pb, O, N and C atoms in 1.

Fig. S17: (a) Close-up view of several highest occupied band and the lowest unoccupied bands in energy band structure of 2. (b) Plots of DOS and PDOS of Pb, O, N and C atoms in 2.

