Supplementary Information

1. Experimental Section

1.1 Catalyst preparation and evaluation

We synthesized the $Ni_xMo_yP_1$ oxidic precursors by stirring an aqueous solution of $Ni(NO_3)_2 \cdot 6H_2O$, $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ and $(NH_4)_2HPO_4$ with a given molar ratio of Ni:Mo:P=x:y:1 (x,y=0, 0.3, 0.6 and 1) at room temperature (RT) for 1 h. In order to dissolve the precipitate, a few drops of nitric acid were added in the solutions. The solutions were dried in air at 110 °C for overnight to form Ni_xMo_yP₁ oxidic precursors. The synthesis of phosphides in CH₄-CO₂ and the reforming reaction were carried out in a fixed-bed micro-reactor with an inner diameter of 10 mm at atmospheric pressure. The $Ni_xMo_vP_1$ oxidic precursors (0.2 g) were heated under a flow of CH₄ and CO₂ (CH₄/CO₂ =1, 30 ml min⁻¹) from RT to 900 °C at a rate of 10 °C min⁻¹ and then the temperature was kepted at 900 °C for 0-30 h. In addition, the $Ni_1Mo_1P_1$ oxidic precursors (0.2 g) were also heated under a flow of H₂ (30 ml min⁻¹) from RT to 650 °C at a rate of 10 °C min⁻¹ and then the temperature was kepted at 650 °C for 2 h. Finally, the resulting sample was suffered from passivation process in a flow of 1%O₂/Ar for 12 h. Prior to the reaction, the catalyst prepared in H₂ was preheated to 900 °C under an H₂ flow and then a flow of CH₄ and CO₂ (CH₄/CO₂ =1, 30 ml min⁻¹) was allowed to pass through the catalyst. The conversions of CH₄ and CO₂, and selectivity of H₂ were defined as follows ($n_{i,in}$ = the initial molar fraction of component *i* in the feed, $n_{i,out}$

= the final molar fraction of component *i* in the gaseous effluent):

$$X_{CH4}(\%) = \frac{n_{CH_4,in} - n_{CH_4,out}}{n_{CH_4,in}} \times 100$$

$$X_{CO2}(\%) = \frac{n_{CO_2,in} - n_{CO_2,out}}{n_{CO_2,in}} \times 100$$

$$S_{H2} = \frac{n_{H_2,out}}{2(n_{CH_4,in} - n_{CH_4,out})} \times 100$$

1.2 Catalyst characterization

X-ray diffraction (XRD) was conducted using an X-ray diffractometer (X'Pert Pro MPD) equipped with a Cu K α source. X-ray photoelectron spectroscopy (XPS) was carried out using a Kratos Axis ultra (DLD) equipped with Al K α X-ray source. The binding energies (±0.2 eV) were referenced to the C 1s peak at 284.8 eV due to adventitious carbon. SEM and TEM images were acquired using a scanning electron microscopy (SEM, Hitachi S-4800) and transmission electron microscope (Philips Tecnal 10). BET surface area of the samples was measured by a Nova 4200e (Quantachrome) instrument. CHN analysis was peformed using a Heraeus CHN-O-Rapid analyzer. H₂-TPR experiments were carried out in a quartz tube micro-reactor. The effluent gases were monitored by means of a GC thermal conductivity detector. Before each H₂-TPR run, the oxidic precursors (10 mg) was heated from RT to 120 °C in He and maintained at this temperature for 30 min. After being cooled to RT, the sample was heated from 30 °C to 1000 °C at a rate of 4 °C/min in a gas mixture of 10%H₂/Ar (80 ml min⁻¹). CO₂ and CH₄ dissociation studies were performed using a flow of $2\%CO_2(2\%CH_4)/Ar$ (50 ml min⁻¹). Prior to the dissociation reaction, the sample was preheated to 900 °C under an H₂ flow and then the gas mixtures were allowed to pass through the sample. The change of CH₄ and CO₂ during reaction was monitored using gas chromatography (GC).

2. Results

Fig. S1 SEM image of H₂-NiMoP sample. The inset shows the XRD pattern of the sample.

Fig. S2 H₂ selectivity over the (a) Ni₁Mo₁P₁ precursors and (b) H₂-NiMoP in DRM. Reaction conditions: CH₄:CO₂=1:1, WHSV=9000 cm³ g⁻¹ h⁻¹, reaction pressure= 1 atm, reaction temperature=900 °C.

Fig. S3 CH₄ and CO₂ conversions over the (a) Ni₁Mo₁P₁ precursor and (b) H₂-NiMoP in DRM. Reaction conditions: CH₄:CO₂=1:1, WHSV=24000 cm³ g⁻¹ h⁻¹, reaction pressure= 1 atm, reaction temperature=900 °C.

Fig. S4 XRD pattern of mechanical mixture of Ni₂P and MoP (Ni:Mo=1:1) treated in H₂ at 800 °C for 1 h. The patterns of Ni₂P and MoP are also shown for comparison.