Electronic Supplementary Information

d_z² Orbital character of polyhedra in complex solid-state transition-metal compounds

Isao Ohkubo*,a,b,c and Takao Mori^{a,b}

^aCenter for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

^bInternational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

^cCenter for Materials Research by Information Integration (CMI²), Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

*Corresponding author, e-mail address: OHKUBO.Isao@nims.go.jp

Contents	Page
1. Description of calculations	S2
2. Electronic structure of 2H-type hexagonal perovskite $SrTiS_3$ composed of face-sharing octahedra	S3-S4
3. Electronic structure of α -NaFeO ₂ -type SrHfN ₂ consisting of edge-sharing octahedral layers	S4
4. Electronic structure of $LiWN_2$ consisting of edge-sharing trigonal prismatic layers	S5-S6
5. Supplementary references	S6

List of Figures

1. Figure S1 (page S2)	Brillouin zones for 4H-type hexagonal perovskite BaTiO ₃ and 2H-type hexagonal perovskites BaTiS ₃ , 2H-SrTiS ₃ , LiWN ₂ , and LiMoN ₂
2. Figure S2 (page S3)	Electronic band structure and orbital characters for a lowest conduction band of 2H-type hexagonal perovskite SrTiS ₃
3. Figure S3 (page S4)	Density of states (DOS) of 2H-type hexagonal perovskite SrTiS ₃
4. Figure S4 (page S4)	Density of states (DOS) of α -NaFeO ₂ -type SrHfN ₂
5. Figure S5 (page S5)	Electronic band structure and orbital characters for the lowest conduction band of LiWN_2
6. Figure S6 (page S6)	Density of states (DOS) of LiWN ₂

1. Description of calculations

The electronic-structure calculations were performed by using the L/APW+lo method, as implemented in the WIEN2k code.^{S1} The generalized gradient approximation-PerdewùBurkeùErnzerhof functional (GGA-PBE)^{S2,S3} and the modified BeckeùJohnson exchange potential (mBJ) were used.^{S4,S5} A GGA-PBE+U approach was also adopted, where U is the effective on-site Coulomb interaction correction. All calculations were performed by using experimental structural coordinates and lattice constants taken from powder neutron and X-ray diffraction measurements. The 4H-type hexagonal perovskite BaTiO₃ crystallizes with a $P6_3/mmc$ structure (space group No. 194) with Ba atoms situated at the (0, 0, 1/4) and the (1/3, 2/3, 0.096715) sites, Ti atoms at the (0, 0, 0) and the (1/3, 2/3, 0.8463314) sites, and O atoms at the (0.51856, 0.0370, 1/4) and the (0.83496, 0.6698, 0.08022) sites.^{S6} The lattice parameters are a = 5.72387 Å and c = 13.96497 Å. The 2H-type hexagonal perovskites BaTiS₃ and SrTiS₃ also crystallize with a $P6_3/mmc$ structure (space group No. 194), with Ba (Sr) atoms situated at the (1/3, 2/3, 1/4) site, Ti atoms at the (0, 0, 0) site, and S at the (0.16551, 0.33212, 1/4) site for BaTiS₃ or the (0.1666, 0.332, 1/4) site for SrTiS₃.^{S7,S8} The lattice constants are a = 6.798 Å for BaTiS₃ and a = 6.59 Å, c = 5.708 Å for SrTiS₃.

To calculate the electronic structures of α -NaFeO₂-type SrMN₂ (M = Zr, Hf) and LiMoN₂ by using the WIEN2k code, the lattice constants of the hexagonal system and the atomic positions of the rhombohedral system were used. α -NaFeO₂-type SrMN₂ (M = Zr, Hf) crystallizes in the *R-3m* structure (space group No. 166), with the Sr atoms situated at the (1/2, 1/2, 1/2) site, M-type atoms at the (0, 0, 0)site, and N at the (z, z, z) site (z = 0.23502 for SrZrN₂, z = 0.23463 for SrHfN₂).^{S9} The hexagonal lattice constants for these calculations are a = 3.373 Å, c = 17.676 Å for SrZrN₂, and a = 3.345 Å, c = 17.678 Å for SrHfN₂. LiMoN₂ crystallizes in the R3 structure (space group No. 146), with the Li atoms situated at the (0.829018, 0.829018, 0.829018) site, Mo atoms at the (0, 0, 0) site, and N at the (0.25204, 0.25204, 0.25204) site and the (0.41414, 0.41414, 0.41414) site.^{S10} The lattice constants are a = 2.86723 Å, c = 15.813 Å. LiWN₂ crystallizes in the P6₃/mmc structure (space group No. 194), with the Li atoms situated at the (0, 0, 0) site, W atoms at the (1/3, 2/3, 1/4) site, and N at the (1/3, 2/3, 0.65253) site.^{S11} The lattice constants are $a \neq 2.881$ Å, c = 10.346 Å. The parameter $R_{\text{mt}}K_{\text{max}}$, where R_{mt} is the smallest muffintin radius (in atomic units) and K_{max} is the plane wave cutoff, controls the size of the basis, which was set to a high value of 7.0 for all materials. The values of $R_{\rm mt}$ for the atomic spheres were 2.5 (Ba), 1.93 (Ti), 1.75 (O) for 4H-BaTiO₃; 2.5 (Ba), 2.45 (Ti), 2.11 (S) for 2H-BaTiS₃; 2.5 (Sr), 2.39 (Ti), 2.06 (S) for 2H-SrTiS₃; 2.26 (Sr), 2.08 (Zr), 1.79 (N) for SrZrN₂; 2.25 (Sr), 2.11 (Hf), 1.73 (N) for SrHfN₂; 1.82 (Li), 2.11 (Mo), 1.82 (N) for LiMoN₂; and 1.83 (Li), 2.17 (W), 1.78 (N) for LiWN₂. 100 k-points in the Brillouin zones were used in calculating the electronic structures. The Brillouin zones for the electronic band structures of 4H-type hexagonal perovskite BaTiO₃, 2H-type hexagonal perovskite BaTiS₃, 2H-SrTiS₃, LiWN₂, and LiMoN₂ are shown in Figure S1.

Figure S1. Brillouin zones for the electronic band structures of (a) 4H-type hexagonal perovskite BaTiO₃, 2H-type hexagonal perovskite BaTiS₃, 2H-SrTiS₃, and LiWN₂ and (b) of LiMoN₂.

2. Electronic structure of 2H-type hexagonal perovskite SrTiS₃ composed of face-sharing octahedra

Figure S2 shows the electronic band structure and the orbital characters for the lowest conduction band of the 2H-type hexagonal perovskite SrTiS₃, which consists of face-sharing TiS₆ octahedral blocks. The results of electronic calculations for 2H-SrTiS₃ using the GGA-PBE functional and the mBJ exchange potential do not show energy-band gaps if the on-site Coulomb interaction is not considered. Energy-band gaps in 2H-SrTiS₃ are observed in the electronic structures calculated by the GGA-PBE+*U* method if the effective Coulombic interaction $U_{eff} > 8$ eV: an effective on-site U_{eff} was therefore taken into account for the Ti site. The calculated energy-band gap (direct) of 2H-SrTiS₃ at the Γ -point is 0.18 eV ($U_{eff} = 9$ eV). The energy-band gaps vary depending on the value of U_{eff} . Figure S3 shows the density of states (DOS) in 2H-SrTiS₃. The lowest conduction band and the highest valence band in 2H-SrTiS₃ have mainly Ti 3d and S 3p orbital characters, respectively. Orbital characters for the lowest conduction band are shown in Figures S2b. Ti $3d_z^2$ (a_{1g}) orbital character predominates in the lowest conduction band, except for the L \tilde{U} H directions. In the L–H directions of the electronic band structures, the Ti $3d_{x'-y'}^2 + 3d_{xy}$ orbitals are dominant.

Figure S2. (a) Electronic band structure and (b) orbital characters for the lowest conduction band in the 2H-hexagonal perovskite SrTiS₃. The amount of Ti $3d_z^2$ orbital character is shown by the width of the lines in the lowest conduction band. In Figure S2b, all s orbitals, p orbitals (p_z , $p_x + p_y$ for Sr and Ti, p_x , p_y , p_z for S), and d orbitals (d_z^2 , $d_x^2-y^2 + d_{xy}$, $d_{xz} + d_{yz}$ for Sr and Ti) are plotted. The electronic band structure was calculated by the GGA-PBE+U method ($U_{eff} = 9 \text{ eV}$).

Figure S3. Total and partial density of states (DOS) of d orbitals in the 2H-hexagonal perovskite SrTiS₃. (a) Total DOS and partial DOS of Sr and S 3p orbitals, (b) d_z^2 , (c) $d_x^{2-y^2} + d_{xy}$, (d) $d_{xz} + d_{yz}$ orbitals. The DOSs were calculated by the GGA-PBE+U method ($U_{eff} = 9 \text{ eV}$).

3. Electronic structure of α-NaFeO₂-type SrHfN₂ consisting of edge-sharing octahedral layers

Figure S4 shows the density of states (DOS) in the α -NaFeO₂-type d⁰-layered complex metal nitride SrHfN₂, which consists of edge-sharing HfN₆ octahedral layers. The DOSs of SrHfN₂ were calculated by using the mBJ exchange potential. The main contributors to the valence bands and the conduction bands are N 2p orbitals and Hf 5d orbitals, respectively. As with the other α -NaFeO₂-type d⁰-layered complex metal nitrides SrZrN₂, NaNbN₂, and NaTaN₂, the Hf 5d_z² orbital characters predominate at the bottom of the conduction band (F-point).^{S12,S13}

Figure S4. Total and partial density of states (DOS) of d orbitals in α -NaFeO₂-type SrHfN₂. (a) Total DOS and partial DOS of Sr and N 2p orbitals, (b) d_z^2 , (c) $d_{x^2-y^2} + d_{xy}$, (d) $d_{xz} + d_{yz}$ orbitals. These DOSs were calculated by using the mBJ exchange potential.

4. Electronic structure of LiWN₂ consisting of edge-sharing trigonal prismatic layers

The electronic band structure and the orbital characters for the lowest conduction band in LiWN₂ are shown in Figure S5. Electronic structures of LiWN₂ were calculated by using the GGA-PBE functional. In LiWN₂, three electronic bands (Bands C, D, and E) cross the Fermi level (0 eV). In Bands C and D, the predominant orbital characters are W $5d_x^{2-y^2} + 5d_{xy}$ near the Fermi level and near the K- and H-points, and W $5d_z^2$ below the Fermi level and near the Γ - and A-points. In Band E, N 2p orbital character predominates. In Bands A and B, the dominant orbital characters are W $5d_z^2$ near the K- and H-points, and W $5d_x^{2-y^2} + 5d_{xy}$ in the Γ -A direction and near the K-point. As shown in Figure S6, large contributions from W $5d_z^2$ and $5d_x^{2-y^2} + 5d_{xy}$ orbitals are separately present near the Fermi level (0 eV) and at about 4 eV, corresponding to locations of Bands C and D near the Fermi level and of Bands A and B at about 5 eV. The electronic structure also contains some N 2p orbital character near the Fermi level and at about 4 eV (Figure S6). Hybridized orbital characters combining W $5d_z^2$, $5d_x^{2-y^2} + 5d_{xy}$ with N 2p are present in the electronic bands near the Fermi level (0 eV) and at about 4 eV.

Figure S5. (a) Electronic band structure and (b–f) orbital characters of electronic bands (Bands A–E) near the Fermi level in LiWN₂. The amounts of W 5d_z² orbital characters are shown in the electronic band structures by the widths of the line (Bands A–E near the Fermi level). All s orbitals, p orbitals (p_z , $p_x + p_y$ for W, p_x , p_y , p_z for N), and d orbitals (d_z^2 , $d_x^2-y^2 + d_{xy}$, $d_{xz} + d_{yz}$ for W) are plotted in Figures S5b–S5f. The electronic band structure was calculated by using the GGA-PBE functional.

Figure S6. Total and partial density of states (DOS) of d orbitals in LiWN₂. (a) Total DOS and partial DOS of Li and N 2p orbitals, (b) d_z^2 , (c) $d_x^2 - y^2 + d_{xy}$, (d) $d_{xz} + d_{yz}$. The DOSs were calculated by using the GGA-PBE functional.

5. Supplementary references

- (S1) P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, Wien2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties; TU Vienna: Vienna, Austria, 2001.
- (S2) J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- (S3) J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- (S4) F. Tran, P. Blaha, *Phys. Rev. Lett.* 2009, **102**, 226401.
- (S5) D. Koller, F. Tran, and P. Blaha, Phys. Rev. B: Condens. Matter, 2011, 83, 195134.
- (S6) J. Akimoto, Y. Gotoh, and Y. Oosawa, Acta Cryst. 1994, C50, 160-161.
- (S7) J. Huster, Z. Naturforsch. B, 1980, 35, 775.
- (S8) H. Hahn, U. Mutschke, Z. Anorg. Allg. Chem. 1956, 288, 269–278.
- (S9) D. H. Gregory, M. G. Barker, P. P. Edwards, D. J. Siddons, Inorg. Chem. 1996, 35, 7608-7613.
- (S10) S. H. Elder, L. H. Doerrer, F. J. DiSalvo, J. B. Parise, D. Guyomard, and J. M. Tarascon, *Chem. Mater.* 1992, **4**, 929–937.
- (S11) S. Kaskel, D. Hohlwein, and J. Strähle, J. Solid State Chem. 1998, 138, 154–159.
- (S12) I. Ohkubo and T. Mori, Inorg. Chem. 2014, 53, 8979–8984.
- (S13) I. Ohkubo and T. Mori, APL Mater. 2016, 4, 104808.