Ru(II) Water Oxidation Catalysts with 2,3-bis(2-Pyridyl)Pyrazine

and tris(Pyrazolyl)Methane Ligands: Assembly of Photo- and

Catalytic-Active Subunits in a Dinuclear Structure

Alice de Palo, Giuseppina La Ganga, Francesco Nastasi, Massimo Guelfi, Marco

Bortoluzzi, Guido Pampaloni, Fausto Puntoriero, Sebastiano Campagna and Fabio

Marchetti

Supporting Information

Table of contents	Page
Figure S1. DFT-optimized geometries of the diastereoisomers $[3A]^{3+}$ and $[3B]^{3+}$	S3
Figure S2. DFT-optimized geometry of [1] ⁺	S4
Figure S3. DFT-optimized geometry of $[1^{W}A]^{+}$ and $[1^{W}B]^{+}$	S5
Figure S4. DFT-optimized geometry of [2 ^{AN}] ⁺	S6
Figure S5. DPV at different pH of a solution of $[1]$ PF ₆	S 7
Figure S6. Spectrophotometric titration of a solution of $[1]PF_6$ by adding CAN in HClO ₄	S 8
0.1 M.	
Figure S7. Absorbance changes of [1]PF ₆ upon addition of 3 eq of CAN in $HClO_4 0.1$ M.	S 8
Figure S8. Absorbance changes of $[1]$ PF ₆ upon addition of 30 eq of CAN in HClO ₄ 0.1 M	S9
and k _{obs} vs catalyst concentration.	
Figure S9. Absorbance changes of [2]Cl upon addition of 3 eq of CAN in HClO ₄ 0.1 M.	S9
Figure S10. CV of $[3]$ PF ₆ in 1:1 (v/v) acetonitrile/phosphate buffer (pH 7)	S10
Figure S11. Oxygen evolution vs time at different concentration of [3]PF ₆ in HClO ₄ 0.1	S10
M, in presence of CAN and initial rate of oxygen production as function of catalyst	
concentration	
Figure S12. Absorbance changes of $[3]$ PF ₆ upon addition of 30 eq of CAN in HClO ₄ 0.1	S11
M and k_{obs} vs catalyst concentration.	
Figure S13 Absorbance changes of [2]Cl upon addition of 30 eq of CAN in HClO ₄ 0.1 M	S11
and k_{obs} vs catalyst concentration.	

Figure S14. Absorbance changes of $[3]$ PF ₆ upon addition of 3 eq of CAN in HClO ₄ 0.1 M.	S12
Figure S15. Oxygen evolution vs time at different concentration of [1]PF ₆ in HClO ₄ 0.1	S12
M, in presence of CAN	
Figure S16. Spectrophotometric titration of a solution of [2]Cl by adding CAN in HClO ₄ 0.1	S13
M.	
Figure S17. Oxygen evolution vs time at different concentration of [2]Cl in HClO ₄ 0.1 M,	S13
in presence of CAN and initial rate of oxygen production as function of catalyst	
concentration	
Figure S18. Spectrophotometric titration of a solution of $[3]PF_6$ by adding CAN in HClO ₄	
0.1 M.	S13
Figure S19. DPV of $[2]$ Cl (1.2 x 10 ⁻⁴ M) at different pH.	S14
Figure S20. CV of [2]Cl in 0.1 M phosphate buffer at pH 7.0 with addition of increasing	
amounts of NaCl	S15
Figure S21. Plot of i _{cat} at 1.65 V vs. [NaCl] for [2]Cl	S15

Figure S1. DFT-optimized geometries of the diastereoisomers $[3A]^{3+}$ and $[3B]^{3+}$ (C-PCM/ ω B97X calculations, dichloromethane as continuous medium). Colour map: Ru, dark green; Cl, light green; N, blue; C, grey. Hydrogen atoms are omitted for clarity.

Selected computed lengths (Å) for [**3B**]³⁺: Ru1-Cl 2.414; Ru1-N1 2.111; Ru1-N2 2.110; Ru1-N3 2.093; Ru1-N4 2.061; Ru1-N5 2.090; Ru2-N6 2.089; Ru2-N7 2.096; Ru2-N8 2.106; Ru2-N9 2.096; Ru2-N10 2.098; Ru2-N11 2.104. Selected computed angles (°) for [**3B**]³⁺: Cl-Ru1-N1 91.6; Cl-Ru1-N2 90.9; Cl-Ru1-N3 176.4; Cl-Ru1-N4 89.8; Cl-Ru1-N5 87.4; N6-Ru2-N7 77.9; N6-Ru2-N8 96.0; N6-Ru2-N9 172.5; N6-Ru2-N10 97.4; N6-Ru2-N11 89.7.

Figure S2. DFT-optimized geometry of $[1]^+$ (C-PCM/ ω B97X calculations, water as continuous medium). Colour map: Ru, dark green; Cl, light green; N, blue; C, grey. Hydrogen atoms are omitted for clarity.

Selected computed lengths (Å) for [1]⁺: Ru-Cl 2.414; Ru-N1 2.108; Ru-N2 1.984; Ru-N3 2.103; Ru-N4 2.100; Ru-N5 2.076. Selected computed angles (°) for [1]⁺: Cl-Ru-N1 90.0; Cl-Ru-N2 87.9; Cl-Ru-N3 89.8; Cl-Ru-N4 95.2; Cl-Ru-N5 172.7.

Figure S3. DFT-optimized geometry of $[1^{W}A]^{+}$ and $[1^{W}B]^{+}$ (C-PCM/ ω B97X calculations, water as continuous medium). Colour map: Ru, dark green; Cl, light green; N, blue; C, grey. Hydrogen atoms. except for those of coordinated water, are omitted for clarity.

Figure S4. DFT-optimized geometry of $[2^{AN}]^+$ (C-PCM/ ω B97X calculations, acetonitrile as continuous medium). Colour map: Ru, dark green; Cl, light green; N, blue; C, grey. Hydrogen atoms are omitted for clarity.

Selected computed lengths (Å) for [**2**^{AN}]⁺: Ru-Cl 2.444; Ru-Nl 2.116; Ru-N3 2.103; Ru-N4 2.070; Ru-N5 2.081; Ru-N6 2.042. Selected computed angles (°) for [**2**^{AN}]⁺: Cl-Ru-N1 91.7; Cl-Ru-N3 176.5; Cl-Ru-N4 85.4; Cl-Ru-N5 90.5; Cl-Ru-N6 89.3.

Figure S5. DPV of $[1]PF_6$ (1.2 x 10⁻⁴ M) at different pH that were adjusted by adding small amounts of NaOH(sol) to a 0.1 M HClO₄ solution and determined by a pH-meter. Glassy carbon was used as working electrode, platinum as counter and Ag/AgCl as reference. Scan rate 20 mV/s.

Figure S6. Spectral changes upon addition of CAN $(5 \times 10^{-3} \text{M})$ to a solution of [1]PF₆ $(2 \times 10^{-5} \text{M})$ in HClO₄ 0.1 M. Solid lines refer to [CAN]/[1] ratio 0, 1 and 2 respectively.

Figure S7. Absorbance changes at 305 nm upon addition of three equivalents of CAN to a solution of $[1]PF_6$ (5x10⁻⁵M) in HClO₄ 0.1 M.

Figure S8. Left side: Absorbance changes at 360 nm upon addition of 30 equivalents of CAN to a solution of [1]PF₆ at different concentrations (29, 37, 46, 58 e 87 μ M) in HClO₄ 0.1 M. Right side: k_{obs} *vs* catalyst concentration.

Figure S9. Absorbance changes at 305 nm upon addition of 3 equivalents of CAN to a solution of $[2]Cl (5x10^{-5}M)$ in HClO₄ 0.1 M.

Figure S10. Cyclic voltammograms of [3][PF₆]₃ (black line) in the range 0.0-2.0 V *vs* Ag/AgCl in 1:1 (v/v) acetonitrile/phosphate buffer (pH 7) (glassy carbon working electrode, scan rate of 50 mV/s). In grey CV of solvent is reported.

Figure S11. Left side: O_2 evolution *vs* time at different concentration of [**3**][PF₆]₃ in HClO₄ 0.1 M, in presence of CAN (200 mM); Right side: Initial rate of O_2 production as function of catalyst concentration ([**3**][PF₆]₃) (50, 75 and 150 μ M).

Figure S12. Left side: Absorbance changes at 360 nm upon addition of 30 equivalent of CAN to a solution of [3][PF₆]₃ at different concentrations (26, 58, 89 e 100 μ M) in HClO₄ 0.1 M; right side: k_{obs} *vs* catalyst concentration (3).

Figure S13. Left side: Absorbance changes at 360 nm upon addition of 30 equivalent of CAN to a solution of [2]Cl at different concentrations (28, 57,100 μ M) in HClO₄ 0.1 M; right side: k_{obs} vs catalyst concentration (2).

Figure S14. Absorbance changes at 305 nm upon addition of 3 equivalents of CAN to a solution of $[3][PF_6]_3$ (5x10⁻⁵M) in HClO₄0.1 M.

Figure S15. O₂ evolution *vs* time at different concentrations (47, 94, 145 e 190 μ M) of [1]PF₆ in HClO₄ 0.1 M, in the presence of CAN (200 mM).

Figure S16. Spectral changes upon addition of CAN (5×10^{-3} M) to a solution of [**2**]Cl (2×10^{-5} M) in HClO₄ 0.1 M. Solid lines refer to [CAN]/[**1**] ratios 0, 1 and 2 respectively.

Figure S17. Left side: O_2 evolution *vs* time at different concentration of [2]Cl in HClO₄ 0.1 M, in presence of CAN (200 mM). Right side: Initial rate of O_2 production as function of catalyst concentration ([2]Cl) (47, 94 and 145 μ M).

Figure S18. Spectral changes upon addition of CAN $(5.2 \times 10^{-3} \text{M})$ to a solution of $[3][PF_6]_3$ $(2.5 \times 10^{-5} \text{M})$ in HClO₄ 0.1 M.

Figure S19. DPV of [**2**]Cl₆ ($1.2 \times 10^{-4} \text{ M}$) at different pH that were adjusted by adding small amounts of NaOH(s) to a 0.1 M HClO₄ solution and determined by a pH-meter. Glassy carbon was used as working electrode, platinum as counter and Ag/AgCl as reference. Scan rate 20 mV/s.

Figure S20. CV of [2]Cl (1 mM) in 0.1 M phosphate buffer at pH 7.0 with increasing amounts of NaCl. The inset shows a magnified view in the potential range for the Ru(III/II) and Ru(IV/III) couples. Electrode:glassy carbon; scan rate = 100 mV s^{-1} .

Figure S21. Plot of icat at 1.65 V vs. [NaCl] for [2]Cl