Supporting Information

Control Synthesis of N-Doped Carbon and TiO₂ Double-Shelled Nanospheres with Encapsulated Multi-Layer MoO₃ Nanosheets as Anode for Reversible Lithium Storage

Jing Wu, Peilin Zhang, Jinzhe Liu, Chencheng Zhou, Shouzhi Guo, Shuo Li, Yuchen Lei, Kuang Li and Luyang Chen*

Supporting Information

Electronic Supplementary Information contains Figures S1-S11 and Table S1

Table of Content

Figure S1. Elemental mapping images of MoO₃@TiO₂.

Figure S2. XRD pattern of MoO₃@TiO₂.

Figure S3. (a)FESEM image and (b)TEM image MoO2@TiO₂.

Figure S4. XRD pattern of MoO₂@TiO₂.

Figure S5. FESEM images of MoO₃@TiO₂@PDA.

Figure S6. FTIR spectrum of MoO3@TiO2@PDA and MoO3@TiO2@Glucose.

Figure S7. The size distribution of MoO3@TiO2@NC.

Figure S8. (a) FESEM image and (b) size distribution of MoO3@TiO2@C.

Figure S9. FESEM images of MoO₃ nanosheets.

Figure S10. Cycling performance of $MoO_3@TiO_2@NC$, $MoO_3@TiO_2@C$, $MoO_3@TiO_2$ and MoO_3 at a current density of 1 A g⁻¹.

Figure S11. Electrochemical properties of $MoO_3@TiO_2@NC//LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ in coin-type full cell: (a) cycling performance at 0.2 A g⁻¹, (b) rate performance at various rate of 0.1, 0.2, 0.5, 1, 2, and 5 A g⁻¹.

Table S1 Comparison of specific capacity of MoO₃@TiO₂@NC sample with some other reported molybdenum oxide-based anode material for LIBs.

Figure S1. Elemental mapping images of MoO₃@TiO₂.

Figure S2. XRD pattern of MoO₃@TiO₂.

Figure S3. (a)FESEM image and (b)TEM image MoO₂@TiO₂.

Figure S4. XRD pattern of MoO₂@TiO₂.

Figure S5. FESEM images of MoO₃@TiO₂@PDA.

Figure S6. FTIR spectrum of MoO₃@TiO₂@PDA and MoO₃@TiO₂@Glucose.

Figure S7. The size distribution of MoO₃@TiO₂@NC

Figure S8. (a) FESEM image and (b) size distribution of MoO₃@TiO₂@C.

Figure S9. FESEM images of MoO₃ nanosheets.

Figure S10. Cycling performance of $MoO_3@TiO_2@NC$, $MoO_3@TiO_2@C$, $MoO_3@TiO_2$ and MoO_3 at a current density of 1 A g⁻¹.

Figure S11. Electrochemical properties of $MoO_3@TiO_2@NC//LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ in coin-type full cell: (a) cycling performance at 0.2 A g⁻¹, (b) rate performance at various rate of 0.1, 0.2, 0.5, 1, 2, and 5 A g⁻¹.

Anode material	Current	Cycle	Reversible	Reference
	density (A g ⁻¹)	number	capacity (mAh g ⁻¹)	
MoO ₃ @TiO ₂ @NC	0.2	200	979.6	This work
MoO ₃ @TiO ₂ @NC	1	700	800.3	This work
MoO ₂ @C octahedrons	1	850	444	[1]
3D-MoO _x @CN-700	1	1000	431	[2]
C/TiO ₂ /MoO ₃ /MoS ₂	0.1	100	540	[3]
MoO ₃ @C nanofibers	0.5	100	623	[4]
MoO ₃ /CNT	0.2	100	421	[5]
MoO _{3-x} nanobelts	1	200	400	[6]
MoO ₃ /V ₂ O ₅ /C	0.2	200	737.6	[7]
TiO ₂ /MoO ₃ nanowire	0.25	200	381	[8]
TiO ₂ /MoO ₃ @CNFs	1	1000	561	[9]
MoO ₃ /rGO	0.5	100	568	[10]
MoO ₃ / carbon nanofiber	0.2	100	795.8	[11]

Table S1 Comparison of specific capacity of MoO₃@TiO₂@NC sample with some other reported molybdenum oxide-based anode material for LIBs.

1 H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Nat. Commun. 6 (2015) 6512.

- 2 Z. Li, C. Wang, X.Z. Chen, X.X. Wang, X.Y. Li, Y. Yamauchi, X.J. Xu, J, Chem. Eng. J. 381 (2020).
- 3 H. Zhou, X. Xia, P. Lv, J. Zhang, X. Hou, M. Zhao, K. Ao, D. Wang, K. Lu, H. Qiao, M. Zimniewska, Q. Wei, ChemSusChem 11(23) (2018) 4060-4070.
- 4 X. Li, J. Xu, L. Mei, Z. Zhang, C. Cui, H. Liu, J. Ma, S. Dou, J. Mater. Chem. A 3(7) (2015) 3257-3260.
- 5 J. Ni, G. Wang, J. Yang, D. Gao, J. Chen, L. Gao, Y. Li, J. Power Sources 247 (2014) 90-94.
- 6 Z. Sun, C. Yang, G. Liu, H. Lu, R. Zhang, L. Wang, H. Wang, Electrochim.Acta239(2017) 16-24.
- 7 Z. Zhang, X. Chen, G. Zhang, C. Feng, J. Nanosci. Nanotechnol. 20(5) (2020) 2911-2916.
- 8 C. Wang, L. Wu, H. Wang, W. Zuo, Y. Li, J. Liu, Adv. Funct. Mater. 25(23) (2015) 3524-3533.
- 9 S. Xie, T. Yao, J. Wang, H. Alsulami, M.A. Kutbi, H. Wang, ChemistrySelect 5(11) (2020) 3225-3233.
- 10 N. Naresh, P. Jena, N. Satyanarayana, J. Alloys Compd. 810 (2019) 151920.
- 11 L. Xiu, L. Yuan, Y. Xiaodong, L. Jin-Le, Y. Yunhua, Y. Xiaoping, Mater. Chem. Front. 3(1) (2019) 120-6.