Supplementary Information

Efficiency and Stability of Narrow-Gap Semiconductor-Based

Photoelectrodes

Jianyun Zheng, †^{ab} Huaijuan Zhou, ^{+c} Yuqin Zou, *^a Ruilun Wang,^a Yanhong Lyu, *^a San Ping Jiang *^b and Shuangyin Wang *^a

a. State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China;

b. Western Australian School of Mines: Minerals, Energy and Chemical Engineering and Fuels and Energy Technology Institute, Curtin University, Perth, Western Australia 6102, Australia;

c. Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.

Table S1. Reported photoelectrochemical (PEC) performances of the photocathodes by surface modification, and their detailed working conditions. The photocurrent at 0 V vs RHE is simplified as $J_{ph,ca}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Treatment method	рН	J _{ph,ca}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2018	p-InP	Repeated surface oxidation/reduction	0	-24				500 W Hg/Xe lamp	82
2018	Cu(In, Ga)(S, Se) ₂	Different S, Ga composition	0.6	-6	1	-18	80	100 mW cm ⁻² , -0.2 V <i>vs</i> RHE	101
2017	SnS	Fast annealing	1	-0.7	3	-7	41	100 mW cm ⁻² , -0.3 V <i>vs</i> RHE	107
2018	p-Si	Nanowire	0	0	1	-52	2	100 mW cm ⁻² , -0.75 V <i>vs</i> RHE	108
2017	Cu ₂ O	High-index facet	7	-0.75	0.25	-0.75	40	100 mW cm ⁻² , -0 V <i>vs</i> RHE	109
2018	Culn(S _{1-x} Se _x) ₂	Different S, Se composition	14	-1.2	12	-0.5	10	100 mW cm ⁻² , NA	110
2017	p-Si	Micro-pillar array	0	-15	0.058	-18.5	0	100 mW cm ⁻² , -0.07 V <i>vs</i> RHE	111
2018	WSe ₂	Intraflake and edge defects	0	-1.63	0.129	-1.63	0	100 mW cm ⁻² , 0 V <i>vs</i> RHE	112
2018	Cu ₂ O	Eu doping	4.9	-3.2				35 mW cm ⁻²	113
2018	Sb ₂ Se ₃	Compositing Graphene	3	-0.65	0.167	-0.65	94	100 mW cm ⁻² , 0 V <i>vs</i> RHE	114
2018	Cu ₂ O	Nanowires	7	-5.45				100 mW cm ⁻²	115
2018	CuGaSe	Different Cu, Ga composition	0	-2	408	-12	0	100 mW cm ⁻² , -1 V <i>vs</i> RHE	116
2018	p-CuInS	Different Cu composition	3	-0.05	0.05	-0.015	0	100 mW cm ⁻² , no applied bias	117
2018	CuGa(S,Se) ₂	Different Cu composition	13	-0.8				100 mW cm ⁻²	118
2019	ReS ₂	Different phase interface	7	0	12	-10	0	100 mW cm ⁻² , -0.25 V <i>vs</i> RHE	119
2019	WSe ₂	Surface oxidation	4.3	-10.6				100 mW cm ⁻²	120

Table S2. Reported photoelectrochemical (PEC) performances of the photoanodes by surface modification, and their detailed working conditions. The photocurrent at 1.23 V vs RHE is simplified as $J_{ph,an}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Treatment method	рН	J _{ph,an}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2010	n (i	Derous popouriro	0	1.1	0.22	1 1	22	100 mW cm ⁻² ,	102
2018	11-51	Porous, nanowire	ð	1.1	0.33	1.1	32	1.23 V <i>vs</i> RHE	102
2010	CdC	Gradient oxygen	11	C	42	c	0	100 mW cm ⁻² ,	105
2018	Cus	doping	11	0	42	D	0	0.4 V <i>vs</i> RHE	105
2010	n CulaS	Different Cu	2	0.61	0.05	0.015	0	100 mW cm ⁻² ,	117
2018	n-cuins	composition	3	0.61	0.05	0.015	0	no applied bias	117
2016		Substitution of Si	-	0.006	0.152	0.006	0	300 W Xe lamp	122
2010	211 _{1.7} 51 _{0.3} GeO ₄	atom	/	0.008	0.153	0.006	0	1.6 V <i>vs</i> SCE	122
2010	A = 7=6=6	Different Ag, Zn	-	0.21	0.270	0.44	0	100 mW cm ⁻² ,	122
2018	Ag ₂ ZnSnS ₄	composition	/	0.31	0.278	0.44	0	1 V vs RHE	123
								5 mW cm ⁻² ,	
2017	CdS	Surface oxidation	7	0.2	1.333	0.15	33	470 nm light,	124
								0.99 V <i>vs</i> RHE	
2019	InGaN	H ₃ PO ₄ treatment	0	18				100 mW cm ⁻²	125

Table S3. Reported photoelectrochemical (PEC) performances of the photocathodes with conductor/semiconductor structure, and their detailed working conditions. The photocurrent at 0 V vs RHE is simplified as $J_{ph,ca}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Surface materials	рН	J _{ph,ca}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2016	Si nanowire	Au₃Cu nanoparticle	6.8	-0.95	18	-4.8	33	20 mW cm ⁻² , 740 nm light, -0.26 V vs RHE	23
2017	p-Si	Pt CoP	7	-7 -5.5				100 mW cm ⁻²	98
2017	p-Si	Stoichiometric MoS ₂	0.3	-22.2	24	-31	6	100 mW cm ⁻² , -0.29 V <i>vs</i> RHE	126
2018	p-Si nanowire	Co ₂ P	0.3	-21.9	20	-18.4	3	100 mW cm ⁻² , 0 V <i>vs</i> RHE	127
2014	p-Si	1T-MoS ₂	0.3	-17.6	3	-17.6	23	100 mW cm ⁻² , 0 V <i>vs</i> RHE	128
2018	Si	Carbon nanosheet	0	-13	1	-13	79	100 mW cm ⁻² , 0 V <i>vs</i> RHE	129
2012	p-Si nanowire	Pt nanoparticle	1	-28.2			0	100 mW cm ⁻²	130
2018	Cu ₂ O	Reduced graphene oxide	6.5	-2.4	0.278	-2.4	23	85 mW cm ⁻² , 0 V <i>vs</i> RHE	131
2015	p-Si	Marcasite-type CoSe ₂	0	-9	0.833	-9	0	100 mW cm ⁻² , 0 V <i>vs</i> RHE	132
2017	p-Si wire	NiMoZn particle	0	-1.45	3.5	-1.45	4	100 mW cm ⁻² , 0 V <i>vs</i> RHE	133
2018	p-Si micropyramid	$WS_{2-x}P_x$ nanosheet	0	-19.11	8	-19.11	14	110 mW cm ⁻² , 0 V <i>vs</i> RHE	134
2013	p-WSe ₂	Pt-Ru	4.2 2 10	> -24	2 2	-15.5 -14	3 11	100 mW cm ⁻² , -0.65 V <i>vs</i> SCE -0.6 V <i>vs</i> SCE	135
2018	3D structured p-Si	Co-P nanoparticle	0	-24.8	30	-24.8	20	100 mW cm ⁻² , 0 V <i>vs</i> RHE	136
1982	p-Si	Pt(0)	4	-3.25	0.5	-3.25	25	100 mW cm ⁻² , 0 V <i>vs</i> RHE	137
2017	p-Si	Nanoporous Au thin film	8.5	-1.25	4.5	1.8	20	100 mW cm ⁻² , -0.59 V <i>vs</i> RHE	138
2015	Si nanowire	N-doped graphene quantum	0	-34				100 mW cm ⁻²	139
2018	p-Si	Ni(TEOA) ₂ Cl ₂	0.3	-5.57	24	-26	4	100 mW cm ⁻² , not shown	140
2018	Si nanowire	Ultrathin MoS ₂ layer	0.5	-16.5	48	-15	7	100 mW cm ⁻² , 0 V <i>vs</i> RHE	141
2017	Sb ₂ Se ₃	MoS _x -S MoS _x	0 0	-16 -5	20 20	-16 -5	100 28	100 mW cm ⁻² , 0 V <i>vs</i> RHE	142

2018	Black n⁺p-Si	Pd nanoparticle	0	-13.8				100 mW cm ⁻²	143
2019	CH 0	Oligoapiling lavor		0.0	2	0.7	72	100 mW cm ⁻² ,	144
2018	Cu ₂ O	Oligoaninine layer	5.5	-0.8	2	-0.7	12	0.1 V <i>vs</i> RHE	144
2019	CuCaS	Au papaparticla	-	1 5	0.0625	2	27	300 W Xe lamp,	145
2018		Au nanoparticie	/	-1.5	0.0025	-2	57	0 V <i>vs</i> RHE	145
2019		Thin MoS Javor	67	25	0 167	2	7	100 mW cm ⁻² ,	146
2018	Cu ₂ O	Thin WOS ₂ layer	0.7	-5.5	0.107	-5	/	0 V <i>vs</i> RHE	140
2017	Macroporous n Si		7	1	2	0	c	100 mW cm ⁻² ,	147
2017	Macroporous p-si	H-CO _{0.85} Se P	/	-1	2	-8	O	-0.6 V <i>vs</i> RHE	147
2019		٨	7 /	0.24	0.056	0.24	0	Xe lamp	110
2018	Cu ₂ O hanowire	Ag	7.4	-0.24	0.050	-0.24	0	0 V <i>vs</i> RHE	140
	p-Si			-24.6	0.583	-40	0	100 mW cm ⁻² ,	
2016	p-InP	2H-MoS₂ layer	1.1	-6.8				from 0.4 to -1	149
	p-GaP			-2.25				V <i>vs</i> RHE	
2015	n+-p-p+-Si	CoPS	0	-35				100 mW cm ⁻²	150
2010	n Si	Motallic Bi	7.4	0	7		10 E	50 mW cm ⁻² ,	151
2019	p-Si		7.4		/	-4	12.5	-0.32 V <i>vs</i> RHE	151
2019	p-Si	ReS ₂ nanosheets	0	-18.5				100 mW cm ⁻²	152
2010	Dia als Ci	Dt	0.7	10.5	00	22	20	100 mW cm ⁻² ,	150
2019	BIACK SI		0.7	-19.5	90	-23	28	no applied bias	153

Table S4. Reported photoelectrochemical (PEC) performances of the photoanodes with conductor/semiconductor structure, and their detailed working conditions. The photocurrent at 1.23 V vs RHE is simplified as $J_{ph,an}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Surface materials	рН	J _{ph,an}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2018	n+n-Si	MoSea	0	30	14	2	15	100 mW cm ⁻² ,	15/
2018	p 11-51	WI03e2	0	30	14	2	15	0.38 V <i>vs</i> RHE	134
2018	CdS nanowire	1T-MoS ₂	7	16.8				300 W Xe lamp	155
2010	Nanostructured		6	0.77	0	0.77	0	80 mW cm ⁻² ,	156
2018	CdS	PANI-PPT	O	0.77	8	0.77	9	1.23 V <i>vs</i> RHE	120
2017	n-Si	Thin Ni layer	9.5	31				100 mW cm ⁻²	157
2012	n (i	Single layer	7.6		>0.279	11	0	100 mW cm ⁻² ,	10
2013	11-51	graphene	7.0	5.5	>0.278		0	0 V vs solution	129
2013	n-Si nanowire	PEDOT layer	13.6	3				100 mW cm ⁻²	159
2016	n (i		0	200	17	10	0	100 mW cm ⁻² ,	160
2016	11-51	PEDUT.PSS	0	28.8	17	10	ð	0.3 V <i>vs</i> RHE	100
2016	Derous CdC	Nation molecule	10	7.2	1 20	F 60	0	100 mW cm ⁻² ,	161
2016	Porous Cas	Nation molecule	12	1.2	1.39	5.08	ð	0 V vs RHE	101
2010	20 645	A	7	1.04	2 70	1.04	22	100 mW cm ⁻² ,	160
2018	50 Cu5	Au	/	1.04	2.70	1.04	25	not shown	102
2010	5.05	D+	7	0 112	0.55	0.112	10	100 mW cm ⁻² ,	162
2019	3113 ₂		/	0.112	0.55	0.112	40	1.23 V <i>vs</i> RHE	103

Table S5. Reported photoelectrochemical (PEC) performances of the photocathodes with semiconductor (insulator)/semiconductor structure, and their detailed working conditions. The photocurrent at 0 V vs RHE is simplified as $J_{ph,ca}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Surface materials	рН	J _{ph,ca}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
								100 mW cm ⁻² ,	
2011	n Ci nillar	Mas	0		24	2.15	-	0 V vs RHE	20
2011	p-si pillar	100354	0	-9.5	24	-2.15	Э	620 nm light,	39
								28.3 mW cm ⁻²	
2017			_	4.5	0.467	4.5		100 mW cm ⁻² ,	101
2017	Cu ₂ O nanowire	C	/	-1.5	0.167	-1.5	0	no applied bias	164
		Hydrogen doped			_			100 mW cm ⁻² ,	
2016	a-SI:H/a-SIGe:H	TiO ₂ layer	13.6	-5.51	5	-6	8	0 V vs RHE	165
2017	<i>c</i> : · · ·!!	5.0.1	_	0.00			_	100 mW cm ⁻² ,	100
2017	p-Si micropillar	α-Fe ₂ O ₃ layer	/	-0.36	0.011	-0.2	5	-0.52 V vs SCE	166
2010		TOOL	6.0	2.2	0.5	0.47	70	100 mW cm ⁻² ,	4.07
2018	Cu ₂ O nanowire	110 ₂ -Cu ⁺	6.8	-2.3	0.5	-0.47	72	0.3 V <i>vs</i> RHE	167
2016	<u></u>		_	2.42		0.45	-	100 mW cm ⁻² ,	100
2016	Cu ₂ O	NIFE-LDH	/	-2.42	40	-0.45	5	-0.2 V vs Ag/AgCl	168
2017	Zn:Cu ₂ O	Cu ₂ O	4.25	-2				100 mW cm ⁻²	169
2017	Cu ₂ O nanowire	ZnO nanoparticle	7	-3.4				100 mW cm ⁻²	170
2017	Cu ₂ O	NiFeSP	13.7	-12.1				100 mW cm ⁻²	171
2019	n Si	Pos	0	0	2	0	0	100 mW cm ⁻² ,	170
2018	p-3i	Res ₂	0	-9	5	-9	0	0 V vs RHE	172
2014	n Si nanowiro	Ni D papaparticla	0	21	1	12	2	100 mW cm ⁻² ,	172
2014	p-si hanowire		0	-21	L	-15	5	0.2 V <i>vs</i> RHE	1/5
2012	n GaB	Cobalovimo	7	27	0.082	1.2	17	100 mW cm ⁻² ,	174
2013	p-Gar	Cobaloxime	/	-2.7	0.085	-1.5	17	0.17 V <i>vs</i> RHE	1/4
2017	n Si	GaN papowiro	14	0	5	40	20	100 mW cm ⁻² ,	175
2017	p-3i	Gaivinanowire	14	-0	5	-40	50	not shown	1/5
2017	n+n-GaAs	SrTiO, Javer	7	-6	24	-6	10	100 mW cm ⁻² ,	176
2017			/		24		10	0 V vs RHE	170
2017	Cu ₂ O	RuO _x	5	-0.8				100 mW cm ⁻²	177
								300 W Xe lamp,	
2018	Cu ₂ O	CuO	6	-0.3	21	-0.3	77	> 420 nm light	178
								0 V vs RHE	
2018	Cu.O nanowire	Cussaver	10	-5.05	5	-5.05	50	100 mW cm ⁻² ,	170
2010	cu ₂ o nanowire		4.5	5.05	5	5.05	50	0 V vs RHE	175
2017	Nanonorous Si	HfO.	0	0	12	-12 5	11	100 mW cm ⁻² ,	180
2017		11102	0		12	12.5		-0.8 V vs Ag/AgCl	100
2016	n-Si	AlaOa	0	0	20	-25	0	100 mW cm ⁻² ,	181
			Ŭ				Ĭ	-0.55 V <i>vs</i> RHE	101
2019	CupO	СЧ(ОН) ²	49	-69	0.44	-69	45	100 mW cm ⁻² ,	187
2013			J	0.9	0.77	0.5		0.4 V <i>vs</i> RHE	102

Table S6. Reported photoelectrochemical (PEC) performances of the photoanodes with semiconductor (insulator)/semiconductor structure, and their detailed working conditions. The photocurrent at 1.23 V vs RHE is simplified as $J_{ph,an}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Surface materials	рН	J _{ph,an}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2012	n Si	NiO	7.2	0.1	4	C F	OF	100 mW cm ⁻² ,	22
2012	11-51	NIO _x	1.2	0.1	4	0.5	65	not shown	/3
2016	- Ci	CoO this lover	12.6	20.99	2500	20.2	14	100 mW cm ⁻² ,	196
2016	11-51	COO _x thin layer	13.0	20.88	2500	30.2	14	1.63 V <i>vs</i> RHE	190
2019	In C nanashaat	7:0	F 07	0.251	0.111	0 207	70	100 mW cm ⁻² ,	107
2018	m ₂ S ₃ hanosheet	2110	5.97	0.351	0.111	0.287	70	1.2 V <i>vs</i> RHE	187
2010	n Si	TiO	6	16	0 1 1 1	0.0	21	100 mW cm ⁻² ,	100
2018	11-31	110 _x	0	1.0	0.111	0.8	21	0 V <i>vs</i> SCE	100
2018	ZnS yolk	CdS multi-shell	12.9	4.8				100 mW cm ⁻²	189
2019	CdS nanorod	Cu. O nanonarticlo	12	47	2	1	7	100 mW cm ⁻² ,	100
2018			12	4.7	2	4	/	not shown	190
2018	CdSe core	Pb _x Cd _{1-x} S gradient	12	10.2	2	8	5	100 mW cm ⁻² ,	101
2018	cuse core	layer	15	10.2	2	0	5	0.2 V <i>vs</i> RHE	191
2012	n-Si wire	Fe ₂ O ₃	13.8	17.27				100 mW cm ⁻²	192
2019	In S. nanoshoot	ZnO shall	7	0.6	0 1 1 1	0.49	0	100 mW cm ⁻² ,	102
2018	m ₂ S ₃ handsheet		/	0.0	0.111	0.48	0	1.23 V <i>vs</i> RHE	195
2018	CdS microbox	MoS ₂	7		0.083	0.25	10	Not shown	194
2018	g_C_N_nanosheet	Zn. Cd. S	71	0.04	0 1 1 1	12.2	0	150 mW cm ⁻² ,	105
2010	g c3iv4 nanosneet	2110.1000.95	7.4	0.04	0.111	12.2	0	not shown	155
2013	Nanotextured n-Si	NiRuO	72	1 3/	15	7	15	100 mW cm ⁻² ,	106
2015	Nanotextured II-5	Nikdox	1.2	1.54	1.5	<i>'</i>	15	2.25 V vs RHE	150
2018	CdS nanorod	SnS nanosheet	7	1 50	0.5	1 50	50	100 mW cm ⁻² ,	107
2010		Sho _x hanosheet	,	1.55	0.5	1.55	50	1.23 V <i>vs</i> RHE	157
2013	n-Si	MnO	13.6	5	0.5	22	16	100 mW cm ⁻² ,	198
			15.0		0.5	~~	10	0 V vs solution	150
2016	Porous Si	TiO ₂ laver	13.6	0.03	1	0.35	0	Solar simulator,	199
			15.0	0.05	-	0.55		1 V <i>vs</i> SCE	155
2018	Si nanowire	Cu ₂ O nanocube	13.6	2				100 mW cm ⁻²	200
2018	InGaN nanowire	IrO nanonarticle	0	11	0.5	8	100	100 mW cm ⁻² ,	201
2010	indan nanowire				0.5		100	0.8 V <i>vs</i> RHE	201
2018	Δg _o SnS _c	7nSe	7	11	0.833	55	0	100 mW cm ⁻² ,	202
2010	75851136	2000	<i>'</i>		0.055	5.5	0	0 V <i>vs</i> RHE	202
2015	n+n-Si	NiO	13.6	30	1200	32	6	100 mW cm ⁻² ,	203
2015	p 11 51		15.0	50	1200	52	0	1.73 V vs RHE	205
2018	Cu ₂ ZnSn(S _{1-x} ,Se _x) ₄	ZnO nanoarray	10.9	2.5				100 mW cm ⁻²	204
2018	n-Si	GeAs nanosheet	12	22	1	3	73	100 mW cm ⁻² ,	205
2010			1.5	5.5	-		,,,	0.9 V <i>vs</i> RHE	205
2018	WS ₂ nanosheet	CdS quantum dot	7.4	0.024	0.078	0.012	4	Not shown	206

2010 Ag 7pSp	Ag 7pSpS	TiO Javor	12.0	2 75	1	2.5	40	100 mW cm ⁻² ,	207
2019	Ag ₂ 21131134		12.0	2.75	1	2.5	40	0.4 V <i>vs</i> RHE	207
2010	TaN	NiFeO	12	6.2	0.25	6.2	21	100 mW cm ⁻² ,	209
2019	1 a ₃ N ₅	NIFeOx	13	6.3	0.25	0.3	21	no applied bias	208

Table S7. Reported photoelectrochemical (PEC) performances of the photocathodes with conductor/semiconductor (insulator or conductor)/semiconductor structure, and their detailed working conditions. The photocurrent at 0 V vs RHE is simplified as $J_{ph,ca}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Middle layer	Surface materials	рН	J _{ph,ca}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2018	Black p-Si	Black TiO ₂	Pd nanoparticle	14	-8.3	100	-10	0	100 mW cm ⁻² , -0.012 V <i>vs</i> RHE	17
2018	n⁺p-Si microwire	SiO ₂	Ni-Mo nanoparticle	1	-34	72	-34	0	100 mW cm ⁻² , 0 V <i>vs</i> RHE	41
2013	a-Si	TiO ₂	Ni-Mo alloy	4	-11.6	12	-10.8	5	100 mW cm ⁻² , 0 V <i>vs</i> RHE	72
2015	n⁺p-Si	TiO ₂	Pt	0	-19.34	48	-0.39	0	100 mW cm ⁻² , no applied bias	81
2018	1D Sb ₂ Se ₃	TiO ₂	Pt	0.5	-12.5	4.5	-7.8	87	100 mW cm ⁻² , 0 V <i>vs</i> RHE	210
2013	p-Si nanowire	TiO ₂	Pt	0	-21	1	-26	2	100 mW cm ⁻² , -1.67 V <i>vs</i> RHE	211
2018	Sb ₂ Se ₃	TiO ₂	a-MoS _x	0	-4.8	1	-11	0	100 mW cm ⁻² , -0.2 V <i>vs</i> RHE	212
2018	p-Si	TiO ₂	3D MoS ₂ layer	0	-27.5	108	-27.5	3	100 mW cm ⁻² , 0 V <i>vs</i> RHE	213
2016	Cu(In,Ga)(Se,S) ₂ , (CIGS)	ZnS	Pt nanoparticle	0.91	-16	10	-24	67	100 mW cm ⁻² , -0.5 V <i>vs</i> RHE	214
2018	Cu ₂ O	TiO _{2-x}	Nafion	6.4	-1.2	2	-1.2	30	100 mW cm ⁻² , 0 V <i>vs</i> RHE	215
2018	p-Si	TiO ₂	Pt nanoparticle	0	0	5	-25	0	100 mW cm ⁻² , -0.9 V <i>vs</i> SCE	216
2016	InP nanowire	TiO ₂	Pt nanoparticle	0	-15.2	10	-10	20	100 mW cm ⁻² , not shown	217
2018	p-Si	WS ₂	Au	0		0.833	-0.4	0	300 W Xe lamp, -1 V <i>vs</i> Ag/AgCl	218
2012	n⁺p-Si	TiO _x	MoS _x	0	-16.2	1	-16.2	4	38.6 mW cm ⁻² , > 635 nm light 0 V <i>vs</i> RHE	219
2015	a-Si	SiO _x	Ni-Mo	4.5	-6	25	-6	0	100 mW cm ⁻² , 0 V <i>vs</i> RHE	220
2014	p-Si	Al ₂ O ₃	Pt	6	0	12	-28	0	100 mW cm ⁻² , -0.9 V <i>vs</i> RHE	221
2013	n⁺p-Si	Мо	MoS ₂	0	-12	120	-8	0	1 sun red light, not shown	222
2015	p-Si	Ті	Ni	14	-20	12	-10	75	225 mW cm ⁻² , -0.8 V <i>vs</i> Ag/AgCl	223
2018	Cu₂O	CuO	Ni _x P _y	7	-3.19	0.111	-1.45	7	100 mW cm ⁻² , 0.05 V <i>vs</i> RHE	224

									38.6 mW cm ⁻² ,	
2016	p-Si	TiO ₂	Pt	14	-17.5	24	-17.5	4	red light,	225
									0 V vs RHE	
2012	Nanotextured n-InP	TiO	Ru	0.51	-37	1	-36	3	100 mW cm ⁻² ,	226
2012	Nullotextured p ini	1102	Nu	0.51	57	, T	50	5	0.23 V <i>vs</i> NHE	220
2012	Ci a ca c	cio	Dtaranantiala		0.4	-	0.1		100 mW cm ⁻² ,	227
2013	Si nanowire	SIO ₂	Pt nanoparticle		-9.1	5	-9.1	0	0 V vs RHE	227
									100 mW cm ⁻² ,	
2016	CuSbS ₂	CdS	Pt	6.5	-4.2	1	-4.2	17	0 V vs RHE	228
									100 mW cm ⁻² .	
2015	p-Cu ₂ O nanowire	Graphene	Au-Cu nanoalloy	5	-4.5	30	-4.5	8	0 V vs BHE	229
2019	ntn Si	TIO	D+	7	75				100 mW cm ⁻²	220
2018		1102	ΓL	/	-7.5					230
2019	n⁺p-Si	TiN	Cubic-NiP ₂	0	-18	125	-18	8	100 mw cm²,	231
									0 V vs RHE	
2019	(CulnS ₂) _{0.81} (ZnS) _{0.19}	CdS	Pt	7	-16.7	1	-16.7	28	100 mW cm ⁻² ,	232
	(00000270.81(-0070.19								0 V vs RHE	
2010	n Si nanowiro	a Eo O Javar	Claver	-		2	27	11	100 mW cm ⁻² ,	122
2019	p-si nanowire	u-re ₂ O ₃ layer	Clayer	/	0	2	-27	11	-1.9 V <i>vs</i> RHE	255
						_		_	100 mW cm ⁻² ,	
2019	Pyramid n*p-Si	Amorphous Ti layer	Nilayer	14	-38.7	8	-10	7	0.375 V <i>vs</i> RHE	234
									100 mW cm ⁻² .	
2019	CuInS ₂ nanosheet	SnS ₂	C ₆₀	7	0	3	-4.51	0	-0.45 V vs RHF	235
									100 mW cm ⁻²	
2019	Amorphous Si	TiO ₂	Au	6.8	-3.6	10.5	-4.85	0		236
									-0.1 V VS KHE	
2019	p-Si	SiOx	Ag-Pt	0	-28	24	-32.5	18	100 mW cm ⁻² ,	237
			-						-0.2 V vs RHE	
2010	n ⁺ nn ⁺ -Si	Ni	Ni-Mo	13.6	-36.3	105	-7 97	0	100 mW cm ⁻² ,	238
2013				15.0	50.5	105	1.57		no applied bias	230

Table S8. Reported photoelectrochemical (PEC) performances of the photoanodes with conductor/semiconductor (insulator or conductor)/semiconductor structure, and their detailed working conditions. The photocurrent at 1.23 V vs RHE is simplified as $J_{ph,an}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Middle layer	Surface materials	рН	J _{ph,an}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2017	n-Si	ZrO ₂	Pt	14	25	13.3	25	10	100 mW cm ⁻² , from 0.4 to -0.2 V <i>vs</i> Ag/AgCl	240
2017	p⁺n-Si	SiO ₂	Ni-Fe inverse opal	14	31.2	10.4	32.5	9	100 mW cm ⁻² , 1.5 V vs RHE	241
2015	n-Si	P(VDF-TrFE)	Ni	14	12.4				100 mW cm ⁻² ,	242
2017	n-Si	SiO _x	Ni nanoparticle	14	3.5	40	30	2	100 mW cm ⁻² , 1 V <i>vs</i> SCE	243
2018	n-Si	Porous SiO ₂	Ni	14	8	24	9	33	100 mW cm ⁻² , not shown	244
2018	n-Si	TiO ₂	NiAu	14	18.8	20	10.8	7	100 mW cm ⁻² , not shown	245
2018	n-Si	ZrO ₂	NiFe nanoparticle	14	34.4	13.33	34.4	5	100 mW cm ⁻² , from 0.4 to -0.2 V <i>vs</i> Ag/AgCl	246
2017	n-Si	TiO ₂	Ni _x Fe _(1-x) nanoflake	14	21.5	20	10	28	100 mW cm ⁻² , 1.16 V <i>vs</i> RHE	247
2017	Si	TiO ₂	Ni	14	11	24	11	27	100 mW cm ⁻² , 1.23 V <i>vs</i> RHE	248
2016	p⁺n-Si	Fluorinated graphene	Pt	0	25.2	28	31.25	5	100 mW cm ⁻² , 0 V vs solution	249
2017	p⁺n-Si	SiO _x	NiFe	13.7 9.5	30.7 12.1	14 100	28.5 30	25 0	100 mW cm ⁻² , 1.85 V <i>v</i> s RHE, 1.8 V <i>v</i> s RHE	250
2015	n-Si n-InP	NiCo ₂ O ₄	NiFe nanoparticle	14	26 0	72 4	31 17	6 20	100 mW cm ⁻² , 1.4 V vs RHE, 1.624 V vs RHE	251
2015	n-Si	TiO ₂	Ni	14	2	60	35	14	100 mW cm ⁻² , 1.85 V <i>vs</i> RHE	252
2018	n-Si microwire	SiO _x	Ni nanoparticle	14	4.5	6	10	10	100 mW cm ⁻² , not shown	253
2019	p⁺pn⁺-Si	Ni	Ni-Mo	13.6	34.5	105	7.97	0	100 mW cm ⁻² , no applied bias	238

Table S9. Reported photoelectrochemical (PEC) performances of the photocathodes with semiconductor/semiconductor (insulator or conductor)/semiconductor structure, and their detailed working conditions. The photocurrent at 0 V vs RHE is simplified as $J_{ph,ca}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Middle layer	Surface materials	рН	J _{ph,ca}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2017	p-Si	TiO ₂	NiFe LDH	14	-7	24	-10	9	100 mW cm ⁻² , not shown	239
2018	n⁺n⁺p-Si	Pt nanoparticle	TiO ₂	0	-35.1	168	-20	12	100 mW cm ⁻² , 0.4 V <i>vs</i> RHE	254
2018	p-Si	SiO ₂	NiO _x	14	-30.6	8	-10	50	100 mW cm ⁻² , not shown	255
2018	a-SiC:H	n-SiO _x :H	TiO ₂	4	-5.5	1	-5.5	18	Not shown, O V <i>vs</i> RHE	256
2015	p-Si nanowire	Pt nanoparticle	TiO ₂	0	-7.5	2	-27	0	100 mW cm ⁻² , -0.5 V <i>vs</i> RHE	257
2015	a-Si	TiO ₂	Mo ₂ C	14	-11.2	1	-10.5	14	100 mW cm ⁻² , 0 V <i>vs</i> RHE	258
2018	p-Si	Inverse opal TiO ₂	Hydrogenases	6	-0.7	5	-0.7	86	100 mW cm ⁻² , > 420 nm light 0 V vs RHE	259
2018	(ZnSe) _{0.85} (Culn _{0.7} Ga _{0.3} Se ₂) _{0.15}	CdS	Ru₂O	13	-9.1	17	-2.9	3	100 mW cm ⁻² , 0.6 V <i>vs</i> RHE	260
2019	p-Si	SiO ₂	Porous NiO _x	14	-21	1	-10	0	100 mW cm ⁻² , 0.6 V <i>vs</i> RHE	261
2019	n⁺p-Si	Ті	NiS _x O _y	14	-26	6	-10	0	100 mW cm ⁻² , 0.05 V <i>vs</i> RHE	262
2019	Cu ₂ O	CuO	Ni(OH)2	6	-7.25	24	-7.25	15.7	100 mW cm ⁻² , 0 V <i>vs</i> RHE	263

Table S10. Reported photoelectrochemical (PEC) performances of the photoanodes with semiconductor/semiconductor (insulator or conductor)/semiconductor structure, and their detailed working conditions. The photocurrent at 1.23 V vs RHE is simplified as $J_{ph,an}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Middle layer	Surface materials	рН	J _{ph,an}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2011	Triple junction, amorphous Si	ITO layer	Cobalt borate	9.2	4.4	0.2	1.1	0	100 mW cm ⁻² , -0.26 V <i>vs</i> RHE	12
2018	Black n-Si	Ni	Nb-doped NiO _x	14	5.1	24	15.3	0	100 mW cm ⁻² , 1.43 V <i>vs</i> RHE	14
2014	p⁺n-Si	Ni	Fe-treated NiO	14	17.3	300	18.5	20	100 mW cm ⁻² , > 635 nm light 1.3 V <i>vs</i> RHE	40
2015	n-Si	CoO _x	NiO _x	14	28	1700	30	0	100 mW cm ⁻² , 1.63 V <i>vs</i> RHE	42
2015	p⁺n-Si	FTO	WO ₃	0	1.24	20	1.24	0	100 mW cm ⁻² , no applied bias	81
2017	n-Si	ZnO	SiO ₂	7	0.28	1	0.21	0	100 mW cm ⁻² , 0.3 V <i>vs</i> Ag/AgCl	85
2016	p⁺n-Si	SiO ₂	CoO _x	14	30.8	72	10	0	100 mW cm ⁻² , not shown	264
2016	Porous n-Si	TiO ₂	ZnO	7	8.2	50	11.5	22	100 mW cm ⁻² , not shown	265
2017	μс-Si:Η	ІТО	NiO _x	14	7.64	1.33	7.5	1	100 mW cm ⁻² , 0.62 V <i>vs</i> Ag/AgCl	266
2017	Black Si	TiO ₂	Co(OH) ₂	14	7.8	4	31	17	100 mW cm ⁻² , 1.65 V <i>vs</i> RHE	267
2013	n-Si	Ni	NiOx	14 9.5	12.5 0	12 80	10 10	0 0	225 mW cm ⁻² , 0.15-0.3 V vs RHE, 0.6-0.65 V vs RHE	268
2017	Si	TiO ₂ nanorod	MOFs-derived Porous Co ₃ O ₄	14	2.71	2	2.68	0	100 mW cm ⁻² , 1.2 V <i>vs</i> RHE	269
2016	n-Si	Al ₂ O ₃	NiO _x	14	3.36	20	9.3	0	100 mW cm ⁻² , 1.33 V <i>vs</i> RHE	270
2014	p⁺n-Si	Ir	lrO _x	0	21	18	21	40	38.6 mW cm ⁻² , 1.23 V <i>vs</i> RHE	271
2016	Ta₅N₃ nanotube	TaO _x	Co(OH) _x	14	6.3	2	7	86	100 mW cm ⁻² , 0.23 V <i>vs</i> Ag/AgCl	272
2019	p⁺n-Si	Ni	Ni-O	13.6	39.7	100	10	0	100 mW cm ⁻² , 1.02 V <i>vs</i> RHE	273

Table S11. Reported photoelectrochemical (PEC) performances of the photocathodes with multi-layered (n > 3) structure, and their detailed working conditions. The photocurrent at 0 V vs RHE is simplified as $J_{ph,ca}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Middle layers	Surface materials	рН	J _{ph,ca}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2017	p-Si	SiO ₂ /Ti	Pt	0	-4.5	40	-8	7	100 mW cm ⁻² , not shown	184
2017	Cu ₂ O	AZO/TiO ₂	RuO _x	5	-5.25	5	-3.6	0	100 mW cm ⁻² , 0 V <i>vs</i> RHE	274
2017	GaInP ₂	TiO ₂ /MoO _x /	Graded MoS _x	0.3	-11	20	-11.2	18	100 mW cm ⁻² , 0 V <i>vs</i> RHE	275
2017	Cu ₂ O	AZO/TiO ₂	Pt	4.15	-2.74	2	-2.74	85	100 mW cm ⁻² , 0 V <i>vs</i> RHE	276
2016	(ZnSe) _{0.85} (CuIn _{0.7} Ga _{0.3} Se ₂) _{0.15}	CdS/Ti/Mo	Pt	7	-7.1	0.5	-0.9	20	100 mW cm ⁻² , no applied bias	277
2017	(ZnSe) _{0.85} (CuIn _{0.7} Ga _{0.3} Se ₂) _{0.15}	CdS/ZnS	Pt	7	-4.3	1	-4.3	7	100 mW cm ⁻² , 0 V <i>vs</i> RHE	278
2018	CH ₃ NH ₃ PbI ₃	PCBM/Ag/Ti	Pt nanoparticle	0 7 14	-18	12	-17.5 -16 -17.5	36 25 36	100 mW cm ⁻² , 0 V <i>vs</i> RHE	279
2014	p-Si	SrTiO ₃ /Ti	Pt	0	-23.4	35	-31	3	100 mW cm ⁻² , 0.6 V <i>vs</i> Ag/AgCl	280
2017	p-Si	Ti/TiO _x /TiO ₂	Pt	0	-20.5	300	-17.2	9	100 mW cm ⁻² , 0.3 V <i>vs</i> RHE	281
2016	Cu ₂ O	AZO/TiO ₂	Re(bipy)	7.8	0	0.25	-2.5	50	100 mW cm ⁻² , -1.9 V vs Fc ⁺ /Fc	282
2014	n⁺p-Si	Mo _x Si/Mo	MoS ₂	0	-17	100	-17	6	100 mW cm ⁻² , 0 V <i>vs</i> RHE	283
2018	p-SnS nanoplatelet	CdS/TiO ₂	Pt	0	-3	1.67	-3	0	80 mW cm ⁻² , 0 V <i>vs</i> RHE	284
2017	GalnAs	GaInP/AlInP	GaInP	0	-13.2				100 mW cm ⁻²	285
2015	GaInP	Al _x In _{1-x} P/AlInPO _x	Rh	0	-14.5	40	-12.3	50	100 mW cm ⁻² , 0.6 V <i>vs</i> RHE	286
2016	a-SiC	nc-SiO _x /TiO ₂ /Ni	Ni-Mo	14	-14	1	-13.6	61	100 mW cm ⁻² , 0 V <i>vs</i> RHE	287
2016	p-Si	SiO ₂ /Pt	SiO _x	0	-27.8	12	-10	0	100 mW cm ⁻² , 0.05 V <i>vs</i> RHE	288
2017	p-Si	SiO ₂ /SiF _x /Ti/TiO ₂	Au	0	-28	1	-32.5	0	Not shown, -0.8 V vs NHE	289
2014	Porous p-CuInS ₂	CdS/TiO ₂	Pt	10	-13	1	-13	0	100 mW cm ⁻² , 0 V <i>vs</i> RHE	290
2013	p-Si	SiO _x /Ti	Pt	0	-18	2.5	-8.13	0	100 mW cm ⁻² , -0.04 V vs RHE	291
2015	n⁺p-Si	n-GaN/ n ⁺⁺ -GaN	p-InGaN	0	-31.2	3	-20.5	0	130 mW cm ⁻² ,	292

		InGaN/p ⁺⁺ -GaN							-0.006 V <i>vs</i> NHE	
2011	<u>()</u>	A70/Ti0	Dt	4.0	76	1.22	0.0	07	100 mW cm ⁻² ,	202
2011	Cu ₂ O		PL	4.9	-7.0	1.55	-0.8	87	not shown	295
2017	ntn Si		Mos	0	12	1/00	12	21	100 mW cm ⁻² ,	204
2017 11 p-31	n p-si	$SIO_2/IVIO_xSI/IVIO_xO$	10052	0	-13	1488	-13	31	0 V <i>vs</i> RHE	294
2014	G: 0	- AZO/T:O	Mac			10	F 7		100 mW cm ⁻² ,	205
2014		$11-A20/110_2$	1VIOS _{2+x}	1	-5.7	10	-5.7	0	0 V <i>vs</i> RHE	295
2017	Dereve Ci	Creations (Nii Co	6- 6	1.4	0	10	10	0	100 mW cm ⁻² ,	200
2017	Porous Si	Graphene/Ni ₃ Se ₂	C0 ₉ S ₈	14	0	10	-10	0	not shown	296
2010			Dt	0.5		2		07	100 mW cm ⁻² ,	207
2010		PCBINI/PEIE-Ag		8.5	-7.7	2	-7.7	8/	0 V <i>vs</i> RHE	297
2019	n Cu O nanarad		Dt	-	10	0.167	10	F0	100 mW cm ⁻² ,	200
2018	p-cu ₂ O nanorou	p-cu ₂ 0/n-cu ₂ 0	PL	/	-10	0.167	-10	50	0 V <i>vs</i> RHE	298
2015	CH 0		D+	1 26	2.05	2	2.05	0	100 mW cm ⁻² ,	200
2013	Cu ₂ O			4.20	-2.95	2	-2.95	0	0 V <i>vs</i> RHE	299
2018	n+n-Si	GaN/TiO	D+	75	-68	10	-21	17	800 mW cm ⁻² ,	300
2018	11 p-51		rt	7.5	-00	10	-21	17	0.27 V <i>vs</i> RHE	500
2015	Cu-O		NiMo	14	-63	10	-63	76	100 mW cm ⁻² ,	201
2015		A207 1102/101032		14	-0.5	10	-0.5	/0	0 V vs RHE	501
2017	n-GaAs	n-GaAs/n-AlGaAs/	A	0	_22.1	107	-22.1	a	100 mW cm ⁻² ,	302
2017	p-GaAs	n ⁺ -GaAs/Pt/Ti/Pt	Au	0	-23.1	192	-23.1	5	0 V <i>vs</i> RHE	502
2018			D+	6.8	_22.2	7	-22.4	0	100 mW cm ⁻² ,	303
2010			rt	0.8	-22.2	,	-22.4	0	0 V vs RHE	505
2017	Se-annealed Sh _a Sea	CdS/TiO	Pt	65	-8.6	10	-8.6	16	100 mW cm ⁻² ,	304
				0.5	0.0	10	0.0	10	0 V vs RHE	501
2014	n+n-Si		Ir	14	-30	48	-31.2	0	Not shown,	305
2014		1,710,102		14	55		51.2		0.3 V <i>vs</i> RHE	505
2018	CusS	CdS/TiO ₂	BuQ.	5	-5 95	3 33	-3 55	15	100 mW cm ⁻² ,	306
					5.55	5.55	5.55		0 V vs RHE	500
2018	c-Si	TaO./Ti	Pt	0	-37 1	2	-37 1	0	100 mW cm ⁻² ,	307
									0 V vs RHE	
2018	a-Si	ZnOB/Ti	CoS	7	-6.34	10	-6.34	5	100 mW cm ⁻² ,	308
				13.6					0 V vs RHE	
2012	Cu ₂ O	AZO/TiO ₂	Pt	1	-3.8	10	-3.8	38	100 mW cm ⁻² ,	309
		-, -2	-			_			0 V vs RHE	
									100 mW cm ⁻² ,	
2013	n⁺p-Si	Ti/TiO ₂	Pt	0	-23.8	72	-19.8	0	> 635 nm light	310
									0.3 V <i>vs</i> RHE	
2015	p-GalnP ₂	TiO ₂ /Cobaloxime	TiO2	13	-11.5	0.333	-9	11	100 mW cm ⁻² ,	311
			-						0 V vs RHE	
2019	Cu(In, Ga)SSe	CdS/ZnO	CoS	7	-3.1				100 mW cm ⁻²	312
2019	CuGaSe	CdS/TiO ₂	MoS ₂	0	-6.5	24	-6.5	69	100 mW cm ⁻² ,	313
	54000	5		Ĩ					0 V vs RHE	

Table S12. Reported photoelectrochemical (PEC) performances of the photoanodes with multi-layered (n > 3) structure, and their detailed working conditions. The photocurrent at 1.23 V vs RHE is simplified as $J_{ph,an}$ (mA cm⁻²), the operation time Stability (h), the initial photocurrent during stability measurements J_{in} (mA cm⁻²), and the degradation rate J_{de}/J_{in} (%). The Remark grid is used to illustrate the testing light source and the potentials during stability measurements.

Year	Light absorber	Middle layers	Surface materials	рН	J _{ph,an}	Stability	J _{in}	J _{de} / J _{in}	Remark	Ref.
2017	n-GaAs	Al ₂ O ₃ /SiO ₂	NiFe	14	5				100 mW cm ⁻²	184
2015	n-Si	SiO _x /Co	СоООН	14 9	35	5 120	10 8	100 0	100 mW cm ⁻² , 1 V vs Ag/AgCl 1.3 V vs Ag/ AgCl	314
2011	n-Si	SiO ₂ /TiO ₂	lr	14	7	24	3	0	100 mW cm ⁻² , 1.7 V <i>vs</i> NHE	315
2017	CdS	CdTe/MoO _x /Ti	Co(OH) _x	8	3.8	0.5	2.18	68	100 mW cm ⁻² , no applied bias	316
2017	Black p⁺n-Si	SnO ₂ /BiVO ₄	СоРі	7	2	1	0.6	58	100 mW cm ⁻² , not shown	317
2017	n-Si	SiO _x /ITO	a-NiOOH	14	27.4	30	27.4	0	100 mW cm ⁻² , 1.23 V <i>vs</i> RHE	318
2015	p⁺n-Si	SiO ₂ /TiO ₂	Ir	0	5.1				100 mW cm ⁻²	319
2016	GaAs	GaInP/TiO₂	Ni	9.3	8.7	110	8.7	0	100 mW cm ⁻² , -0.016 V <i>vs</i> RHE	320
2016	Ta₃N₅	TiO ₂ /Ferrhydrite	Ni(OH) _x	13.6	12.1				100 mW cm ⁻²	321
2016	n-Si	SiO ₂ /TiO ₂	lr	0	0	8	3	66	Not shown	322
2018	n⁺p-Si	SiO _x /Ni/NiO _x	NiFe LDH	14	37	68	10	10	225 mW cm ⁻² , not shown	323
2018	n-Si	SiO ₂ /Al ₂ O ₃ /Pt	Ni	14	24				100 mW cm ⁻²	324
2015	CH ₃ NH ₃ PbI ₃	Spiro-MeOTAD/Au	Ni	12.8	13	0.278	13	84	100 mW cm ⁻² , not shown	325
2017	n-Si	SiO _x /Al ₂ O ₃ /Pt	Ni	14	19.2	200	25	4	100 mW cm ⁻² , 1.7 V <i>vs</i> RHE	326
2016	Si	SiO ₂ /TiO ₂ -RuO ₂	Ir	0	12.5				100 mW cm ⁻²	327
2016	n-Si	GO/SWCNT/ Graphene	Ni	14	0	0.25	2.45	28	100 mW cm ⁻² , 1.73 V <i>vs</i> RHE	328
2017	p⁺n-Si	TiO ₂ /C/CNT	Ru [™] (tda)(py-pyr)₂O	7	0.35	3.33	0.35	0	100 mW cm ⁻² , 1.23 V <i>vs</i> RHE	329
2014	p⁺n-Si	ITO/Au/ITO	NiO _x -triton-X	13.8	3.88	0.444	1.96	5	100 mW cm ⁻² , From 1 to -0.05 V <i>vs</i> RHE	330
2017	n-Si	SiO _x /Ni	Ni(OH) ₂	14 9	13.5	300	8	0	100 mW cm ⁻² , 1.73 V <i>vs</i> RHE	331
2016	GaAs	InGaP/TiO ₂	Ni	13.7	0	3	8	0	100 mW cm ⁻² , no applied bias	332
2016	p⁺n-Si	SiO ₂ /TiO ₂	Ir	14	2.9				100 mW cm ⁻²	333

2019	Si heterojunction	ITO/graphdiyne	NiO _x	14	5	0.11	15	7	100 mW cm ⁻² , 1.4 V <i>vs</i> RHE	334
2019	n-Si	SiO ₂ /NiFe	NiFe(OOH)	13.6	25.4	52	32	0	100 mW cm ⁻² , 1.5 V <i>vs</i> RHE	335