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32 S1. The operational parameters on the MD flux

33 Temperature 

34 The water flux linearly increase with the increase of feed water temperature. When 

35 the feed water increase from 50 to 95℃, the water flux almost increased from 6.13×10-7 

36 to 3.77×10-6 m/s with the feed velocity increased from 0.4 (corresponding to Reynolds 

37 number of 33.68) and the cold water velocity of 12.90 cm/s (corresponding to the 

38 Reynolds number of 21.67) (Fig. S1). The flux was proportional to the vapor pressure 

39 across the membrane. According to Antoine equation, the vapor pressure of pure water 

40 (P0) at the liquid–vapor interface exponentially increased with temperature [1, 2]. 

41 Therefore, the vapor pressure difference across the membrane increased and the driving 

42 force increased as feed temperature increased. Moreover, viscosity of feed water 

43 decrease with the increase of temperature, and thus decrease the mass transfer boundary 

44 layer thickness and increase water flux.

45  Velocity 

46 The feed and permeate water temperature was respectively maintained at 5 and 95 

47 ◦C with the cold water velocity of 12.90 cm/s (corresponding to the Reynolds number 

48 of 21.67). Under these conditions, water flux linearly increased from 3.56×10-6 to 

49 5.90×10-6 m/s with the feed velocity increased from 0.4 (corresponding to Reynolds 

50 number of 33.68) to 1.45 cm/s (corresponding to Reynolds number of 121.85) (Fig. 

51 S2). With feed velocity further increase of to 2.24 cm/s (corresponding to Reynolds 

52 number of 188.13), the water flux only slightly increased to 6.07×10-6 m/s. Previous 

53 studies [3, 4] also indicated that permeate flux increased as feed velocity increased and 

54 reach an asymptotic value when feed velocity increased. The optimal cross-flow 

55 velocity was 1.5 cm/s for feed water and 12.90 cm/s for cold water.
56
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58 Fig.S. 1. Water flux change with the variation of feed water temperature. 
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60 Fig.S. 2. Water flux change with the variation of cross-flow velocity of the feed water
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61 S2. The concentration factor for MD under different scenarios.

62

0 100 200 300 400

1.0

1.1

1.2

1.3

1.4

1.5

 

 

Co
nc

en
tra

tio
n 

Fa
ct

or

Time (min)

 Raw Water
 Coagulation
 Coagulation+UF1
 Coagulation+UF1+UF2
 Coagulation+UF1+UF2+NF

63 Fig.S. 3. Concentration factors of MD process with different pretreatment as the feed 
64 water.
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65
66 S3. The elemental composition of crystallization on the membrane surface
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72 Fig.S. 4. The elements composition of the crystallization in the membrane surface (a) 
73 Raw water (b) Pretreated by coagulation (c) Pretreated by coagulation+UF1 (d) 
74 Pretreated by coagulation+UF1+UF2.
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