Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2018

Electronic Supplementary Information

Neutral fabrication of UV-blocking and antioxidation ligninstabilized high internal phase emulsion encapsulates for high efficient antibacterium of natural curcumin

Kai Chen^a, Yong Qian^{*,a}, Senyi Wu^a, Xueqing Qiu^{*,a}, Dongjie Yang^a, Lei Lei^{*,b}

 ^a School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
 ^b School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia. E-mail: lei.lei@unsw.edu.au (L. Lei).

E-mail: ceyqian@scut.edu.cn (Y. Qian), xueqingqiu66@163.com (X.Q. Qiu), lei.lei@unsw.edu.au (L. Lei). It Includes 16 Pages, 5 Tables, 8 Figures.

EHL (g)	Water	лIJ	37% HCHO	Na ₂ SO ₃	Yield
	(mL)	μп	wt%	wt%	(%)
6.0	40	12.0	15	5	48.3%
6.0	40	12.0	15	10	56.7%
6.0	40	12.0	15	20	61.7%
6.0	40	12.0	15	40	66.7%
6.0	40	12.0	15	60	83.3%

Table S1 The reaction condition and yield of sulfomethylating modification of EHL

Samples	Lignin derivatives	Lignin content wt%	APG wt%	Oil vol%
HIPEs-1		0.5	3.5	80.0
HIPEs-2		1.0	3.5	80.0
HIPEs-3	EHL-5S	2.0	3.5	80.0
HIPEs-4		3.0	3.5	80.0
HIPEs-5		5.0	3.5	80.0
HIPEs-6		0.5	3.5	80.0
HIPEs-7		1.0	3.5	80.0
HIPEs-8	EHL-10S	2.0	3.5	80.0
HIPEs-9		3.0	3.5	80.0
HIPEs-10		5.0	3.5	80.0
HIPEs-11		0.5	3.5	80.0
HIPEs-12		1.0	3.5	80.0
HIPEs-13	EHL-20S	2.0	3.5	80.0
HIPEs-14		3.0	3.5	80.0
HIPEs-15		5.0	3.5	80.0
HIPEs-16		0.5	3.5	80.0
HIPEs-17		1.0	3.5	80.0
HIPEs-18	EHL-40S	2.0	3.5	80.0
HIPEs-19		3.0	3.5	80.0
HIPEs-20		5.0	3.5	80.0
HIPEs-21		0.5	3.5	80.0
HIPEs-22		1.0	3.5	80.0
HIPEs-23	Ent-405	2.0	3.5	80.0
HIPEs-24		3.0	3.5	80.0

Table S2 Experimental factors & levels for HIPEs stabilized with lignin derivatives.

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2018

HIPEs-25		5.0	3.5	80.0
HIPEs-26		0.5	3.5	80.0
HIPEs-27		1.0	3.5	80.0
HIPEs-28	EHL-60S	2.0	3.5	80.0
HIPEs-29		3.0	3.5	80.0
HIPEs-30		5.0	3.5	80.0
HIPEs-31		0.5	3.5	80.0
HIPEs-32		1.0	3.5	80.0
HIPEs-33	LS	2.0	3.5	80.0
HIPEs-34		3.0	3.5	80.0
HIPEs-35		5.0	3.5	80.0
HIPEs-36		2.0	3.5	75.0
HIPEs-37	EHL-20S	2.0	3.5	78.0
HIPEs-38		2.0	3.5	82.0

Samples	$M_{\rm w}$	M_n	PDI	Water	Ph-OH -COOH	-SO3 ⁻
	(Da)	(Da)		solubility	(mmol/g) (mmol/g)	(mmol/g)
EHL	3100	1100	2.82	-	1.54±0.04 1.82±0.0	0.00
EHL-5S	8000	2900	2.76	+++	1.51±0.09 1.87±0.0	0.58±0.03
EHL-10S	8100	2900	2.79	+++	1.50±0.03 1.87±0.0	0.76±0.01
EHL-20S	8200	3000	2.73	+++	1.55±0.07 1.79±0.0	0.89±0.02
EHL-40S	8500	3200	2.65	+++	1.58±0.04 1.83±0.0	1.05±0.01
EHL-60S	8700	4400	1.98	+++	1.54±0.05 1.87±0.0	1.47±0.01
LS	11000	3900	2.82	+++	1.86±0.24 2.18±0.0	2.21±0.02

Table S3 Physicochemical parameters of EHL, EHL-XS and LS

 $^{\alpha}$ PDI = polydispersity index; +++ = fully dissolved in 10% (w/v) concentration; - = insoluble.

Samples	N%	C%	Н%	S%	Contact angle
EHL	0.77	52.99	6.11	0.00	45°±1°
EHL-5S	0.73	44.52	5.74	1.25	39°±1°
EHL-10S	0.57	43.99	6.09	2.20	36°±2°
EHL-20S	0.53	44.07	6.00	2.81	35°±2°
EHL-40S	0.59	43.51	5.98	3.22	32°±1°
EHL-60S	0.43	42.32	6.36	4.80	24°±2°
LS	0.00	40.87	5.54	6.43	16°±2°

Table S4 The elemental contents and contacts angle of EHL, EHL-XS and LS.

Critical parameters						
EHL-XS wt%	APG wt%	Oil vol%	γ <mark>.%</mark>	η* _{LVE} Pa.s	tanð _{lve}	
0.5-5S	3.5	80.0	0.16	80.82	0.03	
1.0-5S	3.5	80.0	0.17	98.28	0.03	
2.0-58	3.5	80.0	0.12	28.22	0.11	
3.0-58	3.5	80.0	0.11	22.56	0.12	
0.5-10S	3.5	80.0	0.17	105.40	0.02	
1.0-10S	3.5	80.0	0.15	87.15	0.03	
2.0-10S	3.5	80.0	0.12	43.18	0.11	
3.0-10S	3.5	80.0	0.12	35.49	0.12	
0.5-208	3.5	80.0	0.20	115.00	0.02	
1.0-208	3.5	80.0	0.17	102.30	0.03	
2.0-20S	3.5	80.0	0.12	97.57	0.04	
3.0 - 20S	3.5	80.0	0.07	8.81	0.46	
0.5-408	3.5	80.0	0.16	91.04	0.03	
1.0-40S	3.5	80.0	0.15	81.57	0.02	
2.0-40S	3.5	80.0	0.11	76.42	0.05	
3.0-40S	3.5	80.0	0.11	45.52	0.08	
0.5-60S	3.5	80.0	0.15	82.98	0.02	
1.0-60S	3.5	80.0	0.16	76.43	0.02	
2.0-60S	3.5	80.0	0.10	37.45	0.07	
3.0-60S	3.5	80.0	0.09	16.73	0.11	
2.0-20S	3.5	75.0	0.05	53.74	0.09	
2.0-208	3.5	78.0	0.05	51.39	0.07	

Table S5 Viscoelastic parameters of the EHL-XS-based HIPEs, as determined by

 amplitude sweep tests at 1 Hz frequency.

Scheme. S1 The sulfomethylating modification of EHL.

Figure S1. The diagrammatic curve of EHL by aqueous titration.

Figure S2. The appearances of the HIPEs stabilized by different EHL concentrations at 3.5 wt% APG, 80 vol% oil and water phase pH of 7.0.

Figure S3. The topography images of EHL-XS with different sulfonation degrees and

LS that coated on mica plates.

Figure S4. The appearances of the HIPEs stabilized by 0.5, 1, 3, 5wt% of EHL-XS (X=5, 10, 20, 40, 60) and LS at 3.5 wt% APG, 80 vol% oil and water phase pH of 6.75.

Figure S5. Optical microscope images and droplet size distributions of the HIPEs stabilized by EHL-XS (X=5, 10, 60) with different concentrations at 3.5 wt% APG, 80 vol% oil and water phase pH of 6.75.

Figure S6. The appearances of the HIPEs stabilized by 2.0 wt% EHL-20S and 3.5 wt%

APG with different internal phase volume fractions.

Figure S7. The growth of *S. aureus* with different incubation time in the presence of the HIPEs without curcumin.

Figure S8. The appearances (a) and OD_{600} values (b) of suspensions with different concentrations of EHL-20S-based HIPEs-cur.