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APPENDIX

A. Process simulation

With the conventional process, this study deals with the FA production process using CO, and H, as raw materials. To establish mass and energy
balances for CO,-based FA production, it was simulated by Aspen Plus Process Simulator and detailed process flowsheet (Fig. A.1) and stream

data (Table A.1) as follows:
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Fig. A.1 Detailed process flowsheet of CO,-based FA production



Table A.1 Detailed stream data of CO,-based FA production

MU-NET3 F-H2 F-CO2 MU-BIZ 27 5 PURGE3 35 37 6 7 20
Mass flows [kg/hr] - - - - - - 13 1,344.8 1,343.5 44.9 44.9 0.5
FA kg/hr - - - 25.0 - - 25.0 24,968.6 24,943.6 - - -
BIZ kg/hr 41.0 - - - 4,216.1 4,257.1 - - - 4,375.0 118.0 1.2
NET3 kg/hr - - 4,401.0 - 29.3 29.3 - - - 6,122.7 11,6925 171
Cco2 kg/hr - 201.6 - - 0.0 0.0 - - - 624.1 422.5 4.3
H2 kg/hr 298.2 298.2 298.2 298.2 313.2 321.3 298.2 387.1 387.1 302.4 313.2 3132
Temperature K 1.0 30.0 1.0 1.0 1.0 180.0 1.0 1.0 1.0 180.0 180.0  180.0
Pressure bar 101.2 2.0 44.0 124.2 100.3 100.3 114.3 114.3 114.3 22.7 9.1 9.1
Enthalpy MwW - - - - - - 13 1,344.8 1,343.5 44.9 44.9 0.5
19 9 11 16 13 14 23 28 25 38 32
Mass flows [kg/hr] 45.4 4,5489 4,538.7 10.3 4,503.6 35.1 5,847.1 5,847.1 - - 4,502.2
FA kg/hr - - - - - - 24,968.6  24,968.6 - - 0.0
BIZ kg/hr 119.2 4,375.0 4,349.6 25.5 4,255.9 93.7 4,255.9 - 4,255.9 39.9 -
NET3 kg/hr 1,709.5 1,816.0 991.1 824.9 106.5 884.6 106.5 - 106.5 77.2 -
Cco2 kg/hr 426.8 426.8 10.9 415.9 0.0 10.9 0.0 - 0.0 0.0 -
H2 kg/hr 313.2 313.2 313.2 313.2 293.2 293.2 334.2 451.2 451.2 313.2 329.7
Temperature K 180.0 180.0 130.0 130.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2
Pressure Bar 9.1 28.3 58.3 5.7 62.3 37.6 94.4 93.9 98.1 54.3 46.0
Enthalpy MwW 19 9 11 16 13 14 23 28 25 38 32




In the CO,-based FA production, H, and CO, must be supplied at high pressure for reaction. Compressors are used to compress CO, and H, and

feed them to the reactor. A simple diagram and specifications are shown in Fig. A.2 and Table A.2, respectively.
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Fig. A.2 Diagram of two compressors in the CO,-based FA production

Table A.2 Specification of two compressors in the CO,-based FA production

F-H-COMP  F-C-COMP

Number of stages 3 6
Discharge pressure from last stage (bar) 180 180
Net work required (kW) 192.6 481.4




FA is produced according to the reactor yield, assuming that CO,, H, and Net3 are reacted under high-pressure reactor while temperature and

pressure are constant.
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Fig. A.3 Diagram of the reactor in the CO,-based FA production

Table A.3 Detailed flow data of the reactor in the CO,-based FA production

F-MIXC RXT

Mass Flows  kg/hr 11,167 11,167

FA kg/hr 45 4,549
BIZ kg/hr - -
NET3 kg/hr 4,375 4,375
co2 kg/hr 6,123 1,816
H2 kg/hr 624 427
Temperature C 40 40

Pressure bar 180 180




The FA-Net3 adduct is generated after producing FA using CO,, H, and Net3. Since FA and Net3 have an azeotropic point, it is difficult to
separate them, so we use 1-n-butylimidazole to separate Net3 and FA. This separated Net3 is recovered for reuse, and the distillation column is

used to separate the remaining FA and 1-n-butylimidazole.
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Fig. A.4 Diagram of the column in the CO,-based FA production

Table A.4 Specification of the column in the CO,-based FA production

Calculation type equilibrium
Number of stages 10
Condenser Total
Distillater rate 97.82 kmol/hr
Reflux rare 195.64 kmol/hr

Condender heat duty  -3052.02 kW
Reboiler heat duty 230.27 kW




Table A.5 Detailed flow data of the column in the CO,-based FA production

S9 BIZ FA

Mass Flows  kg/hr 30815.64 26313.41 4502.23

FA kg/hr 5,847 1,345 4,502
BIZ kg/hr 24,969 24,969 0
NET3 kg/hr - - -
CcOo2 kg/hr - - -
H2 kg/hr - - -
Temperature C 185 114 25

Pressure bar 0.200 0.200 1.013




To evaluate the environmental impacts of each representative subprocess in the CO,-based FA production, we divide into four sub-stages:

Compression; Reaction; Net3 recovery; FA purification and 1-n-butylimidazole recovery.
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Fig. A.5 Process flowsheet of CO,-based FA production with sub-processes (red line: compression stage; blue line: reaction stage; purple line:

Net; recovery stage; green line: FA purification and 1-n-butylimidazole recovery; )



The four stages are represented by boxes, and the correlation and usage of materials and energy used in each stage are expressed as the process

flow chart.
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Fig. A.6 Process flow chart of CO,-based FA production



The calculations for input and output materials at each step are shown in Table A.6.

Table A.6 Detailed input/output data of the CO,-based FA production

Input [kg/hr] Output [kg/hr]
1-n- 1-n-

FA butylimidazole Nets €0, Hz FA butylimidazole Nets €0, H2
Compression 44.9 0.0 43750 6122.7 6241 44.9 0.0 43750 6122.7 624.1
Reaction 44.9 0.0 43750 6122.7 624.1 4548.9 0.0 43750 1816.0 426.8
Net; recovery 5892.4 24968.6 43750 1816.0 426.8 5892.4 24968.6 43751 1816.0 426.8

FA purification and 1-n-butylimidazole oo/ 24968.6 0.0 00 00 5847.1 24968.6 0.0 00 0.0

recovery
CO, capture 0.0 0.0 00 61227 00 0.0 0.0 00 61227 0.0

In order to evaluate the environmental impact of each stage, we used the equivalent ratio of the materials and energy used in each stage and
the amount of CO, emitted, compared to the total amount of FA produced in the CO,-based FA production.

Table A.7 Detailed data for FA production from CCU processes (values per kg pure FA)

Input Output
H, CO, used  Electricity Steam CO, emission
[kg/ kgeal  [kg/kgeal  [KWh/kgra]  [kKWh/kgeal [kg/kgeal
Compression 0 0 0.158589 0.02264 0
Reaction 0.045 1.359936 0 0 0.403
Net; recovery 0 0 0.046252 0.533992 0
FA purification and 1-n-butylimidazole recovery 0 0 0.000178 0.349307 0

CO, capture 0 0 0.001051 0.1338 0




B. LCA data and results
SimaPro software was used to evaluate fossil-based and CO,-based FA productions and. Ecoinvent 3 database was used, and the sources for the
use of raw materials and utilities are shown in Table B.1.

Table B.1 Considered LCA data sets

Product Name of data set Database
Electricity Electricity from natural gas by using the conventional power plant [KR] SimaPro
Electricity Electricity from blast furnace gas by using the power plant [KR] SimaPro
Electricity Electricity from biogas by using the power generation plant with gas engine [KR] SimaPro
Electricity Electricity from hard coal by using the hard coal power plant [KR] SimaPro
Electricity Electricity from hydropower technology by using the run-of-river power plant [KR] SimaPro
Electricity Electricity from nuclear technology by using the pressure water reactor [KR] SimaPro
Electricity Electricity from oil by using the oil power plant [KR] SimaPro
Electricity Electricity from photovoltaic technology by using the open ground photovoltaic plant [KR] SimaPro
Electricity Electricity from wind technology by using the wind turbine [KR] SimaPro
Electricity Electricity from the wood chip by using the power generation plant [KR] SimaPro

Heat Heat from the natural gas by using the combined cycle power plant [KR] SimaPro
Heat Heat from BFG by using the power plant [KR] SimaPro
Heat Heat from the biogas by using the heat generation plant with gas engine [KR] SimaPro
Heat Heat from the hard coal by using the heat generation plant [KR] SimaPro
Heat Heat from the oil by using the heat generation plant [KR] SimaPro
Heat Heat from the wood chip by using the heat generation plant [KR] SimaPro
co CO from partial combustion of heavy heating oil [RoW] SimaPro
H, H, from chor-alkali electrolysis technology by using membrane cell [RoW] SimaPro
H, H, from the naphtha cracking technology [RoW] SimaPro
H, H, from chor-alkali electrolysis technology by using mercury cell [RoW] SimaPro

H, H, from steam reforming technology SimaPro




The environmental assessment of the two processes of the FA production (conventional process vs. CCU
process) was conducted. Fig. B.1 shows the values for 18 environmental impact factors as shown in Fig.
3 in the main text. The value for a process with a large value is substituted for 100%, and the ratio to the

value is presented in Fig. B.1.
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Fig. B.1 Comparison of environmental impact assessment results for two processes.



In this study, the utilities required for FA production are satisfied by a power plant using natural gas.

Three case studies (2, 3, and 4) were conducted to evaluate and compare the environmental impacts of

changes in raw materials and technologies that produce utilities. First, the results of case 2, in which

heat is produced and supplied using natural gas when the raw materials are changed to produce heat

(BFG, biogas, hardcoal, oil, and wood chip) in the conventional process, are shown in Fig. B.2.
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Fig. B.2 Comparison of environmental impact assessment results for conventional process in case 2.



Like the conventional process, the environmental impacts of changes in raw materials and technologies

that produce utilities in CCU process are shown in Fig. B.3.
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Fig. B.3 Comparison of environmental impact assessment results for CCU process in case 2.



Second, the results of case 3, in which electricity is produced and supplied using natural gas when the

raw materials are changed to produce electricity (BFG, biogas, hardcoal, hydropower, nuclear,

photovoltaic, wind power and wood chip) in the conventional process, are shown in Fig. B.4.
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Fig. B.4 Comparison of environmental impact assessment results for conventional process in case 3.



Like the conventional process, the environmental impacts of changes in raw materials and technologies

that produce electricity in CCU process are shown in Fig. B.5.
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Fig. B.5 Comparison of environmental impact assessment results for CCU process in case 3.



In the last case study, we selected raw materials and technologies which had the best environmental

factors by the results of case 2 and 3. Also, the environmental impact was applied to the process of

producing FA by using selected raw materials and technology. The results of this case study (case 4)

were compared with the results of an environmental impact assessment using natural gas only (case 1).
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Fig. B.6 Comparison of environmental impact assessment results for two processes in case 4.



Until now, we have carried out the environmental evaluation based on the total amount of materials
and energy of two processes that produce FA. In order to evaluate the environmental impacts of the
subprocess in CO,-based FA production, we divided it into four stages and carried out an environmental

impact assessment.
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Fig. B.7 Comparison of environmental impact assessment results for sub-processes in CO,-based FA

production.
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Fig. B.8 Comparison of environmental impact assessment results for sub-processes in CO,-based FA

production.
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Fig. B.9 Comparison of environmental impact assessment results for sub-processes in CO,-based FA

production.



Table B.2 Non-normalized environmental impacts for the FA of sub-processes in kg product

FA production and

Unit €O, Compression Reaction Net3 1-n-butylimidazole
capture recovery
recovery
Climate change kgCO2eq 0012811  0.110894 0.13744  0.079993 0.031686
Ozone depletion kg CFC-11eq 8.91E-10  7.74E-09 4.64E-07  5.57E-09 2.20E-09
Terrestrial kgSO2eq  9.79E-06  9.83E-05 0.003557  6.47E-05 2.40E-05
acidification
Freshwater kgPeq 11907  1.54E-06 0.00042  8.77E-07 2.86E-07
eutrophication
Marine keNeq  3.81E-07  4.19E-06 0.000208  2.62E-06 9.27E-07
eutrophication
Human toxicity ~ kg 1,4-DBeq 0.000742  0.00746 0396226  0.004909 0.001819
Photochemical
: : kg NMVOC  1.37E-05  0.00014 0002141  9.13E-05 3.35E-05
oxidant formation
Particulate matter | o\i10eq  3.31E-06  3.39E-05 0002159  2.21E-05 8.11E-06
formation
Terrestrial kg1,4-DBeq 6.91E-07  6.05E-06 439E-05  4.33E-06 1.71E-06
ecotoxicity
Freshwater kg1,4-DBeq 5.04E-05  0.000451 0011646  0.000319 0.000124
ecotoxicity
Marine ecotoxicity kg 1,4-DBeq 1.79E-05  0.000171  0.010985  0.000116 4.39E-05
lonising radiation ~ kBqU235eq 2.79E-05  0.000265  0.081582  0.00018 6.87E-05
Agricultural land m2a 6.25E-06  7.58E-05 0024888  4.48E-05 1.51E-05
occupation
Urban land m2a 4.63E-06  0.00106  0.007781  4.64E-05 1.04E-05
OCCUpatlon
Natural land m2 1.47E-06  1.34E-05 9.056-05  9.34E-06 3.61E-06
transformation
Water depletion m3 2.08E-05  0.000169  0.015909  0.000127 5.15E-05
Metal depletion kgFeeq  5.81E-05 0.000661  0.042814  0.000405 0.000141
Fossil depletion kgoileq  0.004811  0.041613  0.203051  0.030033 0.0119
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Fig. B.10 Comparison of environmental impact assessment results for four sub-stages in CO,-based FA
production.
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B.11 Environmental profile of 1 kg of formic acid showing relative proportions of each of the 18
impact categories.



C. Catalyst information

In CO,-based FA production, with homogeneous promoter, the low-molecular-weight amine NR; is
quantitatively converted into amine FA adduct (HCOOH-NR;) with an acid-amine molar ratio (AAR) >
1.33.1 To increase AAR and solve difficulty of catalyst separation, a heterogeneous catalyst supported
metal was investigated to produce them. By employing a metal catalyst (i.e., commercial AUROlite
catalyst consisting of gold supported on titania), the direct formation reaction of amine FA adduct took
place with high AAR (1.715) and the catalyst was stable without deactivation.! By using AUROIite catalyst,
FA is more producible, but the drawback of this procedure remains the separation of NR; to make pure
FA.

We calculated the price based on the catalyst composition. The results are shown in Table C.1.

Table C.1 Datails of AUROlite catalyst cost

Unit Au? Tio,3
Composition wt% 1 99
Material cost UssS/kg 8,632 3

Catalyst cost UssS/kg 90
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