Supplementary Information

Metal-free quinolylation of the primary amino groups of amino acid derivatives and peptides with dihydrooxazolo[3,2-a]quinoliniums
Peng Liu, ${ }^{\text {a,b }}$ Bo Li, ${ }^{*}$ a,b Mengyu Xi, ${ }^{\text {a,b }}$ Zhaoqiang Chen, ${ }^{\text {a,b }}$ Haiguo Sun, ${ }^{\text {a,b }}$ Xiajuan Huan, ${ }^{\text {a }}$ Xuejun Xu, ${ }^{\text {a }}$ Yong Zhang, ${ }^{a}$ Kun Zou, ${ }^{\text {a }}$ Xiangrui Jiang, ${ }^{\text {a,b }}$ Zehong Miao, ${ }^{\text {a,b }}$ Jinggen Liu, ${ }^{\text {a,b }}$ Jingshan Shen, ${ }^{\text {a,b }}$ Kaixian Chen, ${ }^{\text {a,b,c }}$ Weiliang Zhu ${ }^{* a, b, c}$
${ }^{a}$ Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
Email: boli@simm.ac.cn; wlzhu@simm.ac.cn
${ }^{b}$ School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
${ }^{c}$ Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China

Table of Contents

1. Supporting figure .. 2
2. Chemical experiments .. 2
3. Biological studies... 12
4. DFT Studies .. 14
5. References... 16
6. NMR spectra of products .. 17

1. Supporting figure

Figure S1. Screened substrates that can't react with N-terminus of amino acid

2. Chemical experiments

2.1 General information

All reactions were carried out at room temperature under anhydrous atmosphere. Yields were determined by HPLC. All materials and solvents were purchased from commercial suppliers and used without further purification. The LRMS and HRMS were recorded on Finnigan LCQ/DECA and Micromass Ultra Q-TOF (ESI) spectrometer, respectively.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were taken on Bruker Avance - 400 and 500 NMR spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 125 MHz for ${ }^{13} \mathrm{C}$ NMR, respectively, using TMS as the internal standard and CDCl_{3}, MeOD- d_{4}, Acetone- d_{6} or DMSO- d_{6} as the solvent. Chemical shifts are given in δ values of ppm. The abbreviations s is singlet, d is doublet, t is triplet and m is multiplet. Coupling constants (J) were measured in hertz (Hz).

2.2 Substrate synthesis

2-(2,2-Dimethoxyethoxy)quinoline (4). 2,2-dimethoxyethan-1-ol ($3.89 \mathrm{~g}, 36.6 \mathrm{mmol}$) was charged into a 250 ml round-bottom flask containing anhydrous DMF (50 ml). Sodium hydride ($1.76 \mathrm{~g}, 73.2 \mathrm{mmol}$) was added. After 30 minutes, 2-chloroquinoline ($4 \mathrm{~g}, 24.4 \mathrm{mmol}$) was added and the reaction was stirred at room temperature for 24 h . The grey solution was quenched with
ice water $(200 \mathrm{ml})$, extracted with EtOAc ($200 \mathrm{ml} \times 2$), washed with brine $(200 \mathrm{ml} \times 2)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by column chromatography to afford 4 as a white solid in 81% yield $(4.608 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, J=8.3,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.86(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $161.41,146.29,138.81,129.46,127.37,127.26,125.18,124.11,113.07,101.84,64.58,53.95$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found 234.1127, calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3} 234.1125$.

Alternative preparation method for compound 4: quinolin-2-ol (10.0 mmol) was charged into a round-bottom flask containing anhydrous acetone (50 ml). Sodium carbonate (12.0 mmol) was added. After 30 minutes, 2-bromo-1,1-dimethoxyethane (11.0 mmol) was added and the reaction was stirred at reflux temperature for 48 h . The reaction mixture was quenched with ice water and filtered. After washing by water, the precipitate was dried to give the compound 4 in almost quantitative yield.

2-(2,2-Dimethoxyethoxy)-4-methylquinoline (4A). Following the procedure of $\mathbf{4}$ starting from 2-chloro-4-methylquinoline, the product $\mathbf{4 A}$ was obtained as a white solid in 39% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (ddt, $J=8.2$, $7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddt}, J=8.0,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{td}, J=5.2,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=5.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.64(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.26,146.92,146.28,129.20,127.74,125.48,123.86,123.61$, 112.98, 101.87, 64.30, 53.93, 18.65. HRMS (ESI) $[M+H]^{+}$found 248.1277, calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}$ 248.1281.

2-(2,2-Dimethoxyethoxy)-8-methylquinoline (4B). Following the procedure of 4 starting from 2-chloro-8-methylquinoline, the product $\mathbf{4 B}$ was obtained as a white solid in 64% yield. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.52(\mathrm{~s}, 6 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found 248.1277, calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}$ 248.1281.

6-Chloro-2-(2,2-dimethoxyethoxy)quinoline (4C). Following the procedure of 4 starting from 2,6-dichloroquinoline, the product $\mathbf{4 C}$ was obtained as a white solid in 81% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.57 (dd, $J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.50(\mathrm{~s}, 6 \mathrm{H})$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found 268.0734, calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNO}_{3}$ 268.0735.

8-Bromo-2-(2,2-dimethoxyethoxy)quinoline (4D). Following the procedure of 4 starting from 8-bromo-2-chloroquinoline and heating to $80^{\circ} \mathrm{C}$, the product $\mathbf{4 D}$ was obtained as a white solid in 50% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.73-$ $7.70(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H})$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found 312.016, calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrNO}_{3} 312.018$.

2-(2,2-Dimethoxyethoxy)-6-(4-methoxyphenyl)quinoline (4G). (4-methoxyphenyl)boronic acid ($73 \mathrm{mg}, 0.64 \mathrm{mmol}$), 6-bromo-2-(2,2-dimethoxyethoxy)quinoline ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAC})_{2}(1.5 \mathrm{mg}, 0.64 \mathrm{mmol} \%)$, Xphos $(12 \mathrm{mg}, 2.56 \mathrm{mmol} \%)$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(136 \mathrm{mg}, 0.64 \mathrm{mmol})$
were charged into a 50 ml round-bottom flask containing toluene (20 ml). The reaction was nitrogen-flushed and then stirred at $100^{\circ} \mathrm{C}$ overnight. Upon completion, the reaction mixture was cooled and evaporated to dryness. The residue was diluted in water and extracted twice with EtOAc, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by column chromatography to afford 4 G as white solid in 67% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{HRMS}(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+}$ found 340.147, calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4} 340.150$.

2-(2,2-Dimethoxyethoxy)-6-(4-(trifluoromethyl)phenyl)quinoline (4H). Following the procedure of $\mathbf{4 G}$, the product $\mathbf{4 H}$ was obtained as a white solid in 90% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 88.11-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.83-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 1 \mathrm{H}), 4.90$ $-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$. HRMS $(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+}$found 378.1315, calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3} 378.1312$.

4-(2-(2,2-Dimethoxyethoxy)quinolin-6-yl)benzonitrile (4I). Following the procedure of 4G, the product 4I was obtained as a white solid in 85% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.73(\mathrm{~m}, 4 \mathrm{H})$, $7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 6 \mathrm{H})$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found 335.1324 , calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} 335.1326$.

Methyl 4-(2-(2,2-dimethoxyethoxy)quinolin-6-yl)benzoate (4J). Following the procedure of $\mathbf{4 G}$, the product $\mathbf{4 J}$ was obtained as a white solid in 88% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.14 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.05$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (s, 1H), $7.92-7.89$ (m, 2H), 7.75 (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 3.50(\mathrm{~s}, 6 \mathrm{H})$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found 368.1423 , calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{5} 368.1424$.

2-(2,2-Dimethoxyethoxy)-7-(2-fluorophenyl)-4-methylquinoline (4K). Following the procedure of $\mathbf{4 G}$, the product $\mathbf{4 K}$ was obtained as a white solid in 87% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3$, $156.5,142.4,142.0,132.5,126.6,124.9,124.3,123.5,120.6,120.4,120.1,119.3,111.7,108.9$, 97.5, 60.1, 49.6, 14.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found 342.1499 , calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FNO}_{3} 342.15$.

2.3 Experimental data

N-methyl-2-(quinolin-2-ylamino)acetamide (6). 2-(2,2-dimethoxyethoxy)quinoline (200 $\mathrm{mg}, 0.86 \mathrm{mmol})$ reacted with hydrochloric acid in diethyl ether (5 mL). After that the solvent was evaporated under anhydrous atmosphere. The residue was dissolved in anhydrous n-butanol (10 mL) directly without further purification and treated with 2 -amino-N-methylacetamide (151 mg , $1.71 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(237 \mu \mathrm{~L}, 1.71 \mathrm{mmol})$. After stirring overnight at room temperature, the reaction mixture was concentrated. $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture and the mixture was extracted twice with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by reverse-phase silica gel column chromatography $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=0 \%\right.$ to $\left.80 \%\right)$ to give $\mathbf{6}$ as a white solid in 95% yield (172 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}$, $1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3$,
156.0, 147.4, 137.8, 129.8, 127.5, 126.2, 123.7, 122.8, 111.9, 45.9, 26.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$ found $\mathrm{m} / \mathrm{z} 216.1006$, calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O} 215.1058$.

Alternative quaternary ammonium salt preparation method: Concentrated sulfuric acid is added dropwise to the sodium chloride solid to produce hydrogen chloride gas. This gas is then passed to the acetone solution containing the 2-(2,2-dimethoxyethoxy)quinoline for reaction. After the reaction is completed, the solvent is distilled for recovery. The obtained residue is a quaternary ammonium salt for further amino coupling reaction.
(R)-N-methyl-2-(quinolin-2-ylamino)propanamide (6a). Following the procedure of 6 starting from (S)-2-amino-N-methylpropanamide, the product $\mathbf{6 a}$ was obtained as a white solid (yield 92% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.61$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,155.8,147.4,137.6,129.7,127.5$, 126.1, 123.6, 122.6, 112.0, 50.7, 26.1, 18.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 230.1284$, calcd for (20)
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O} 230.1288$. [$\left.\alpha\right] \quad-141.5\left(\mathrm{c}=0.188, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(S)-N,3,3-trimethyl-2-(quinolin-2-ylamino)butanamide (6b). Following the procedure of $\mathbf{6}$ starting from 2-amino-N,3,3-trimethylbutanamide, the product $\mathbf{6 b}$ was obtained as a white solid (yield 66% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ ($\mathrm{s}, 1 \mathrm{H}$), $5.68(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,156.3,147.1,137.8,129.7,127.5,125.7,123.6,122.5,112.0,34.4$, 20)
27.0, 26.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found m / z 272.1756, calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}$ 272.1757. [α] $178.7\left(\mathrm{c}=0.075, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(S)-N-methyl-2-phenyl-2-(quinolin-2-ylamino)acetamide (6c). Following the procedure of $\mathbf{6}$ starting from (S)-2-amino-N-methyl-2-phenylacetamide, the product $\mathbf{6 c}$ was obtained as a white solid (yield 63% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d_{4}) $\delta 7.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-$ $7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$) $\delta 173.8,156.1,147.5,138.6,136.8,128.9,128.3,127.7$, $127.5,127.1,125.6,123.7,122.0,112.4,59.7,25.1$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 292.145$, 20)
calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}$ 292.144. $[\alpha] \quad-4.0\left(\mathrm{c}=0.121, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(S)-N-methyl-3-phenyl-2-(quinolin-2-ylamino)propanamide (6d). Following the procedure of $\mathbf{6}$ starting from (S)-2-amino-N-methyl-3-phenylpropanamide, the product $\mathbf{6 d}$ was obtained as a white solid (yield 72% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 7.86(\mathrm{~s}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J$ $=13.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=13.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone $-d_{6}$) $\delta 205.2,172.3,156.2,147.8,138.5,136.7,129.3,129.0,128.1,127.4,126.2,126.1$, 123.6, 121.8, 113.1, 56.0, 38.0, 25.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 306.1597$, calcd for 20)
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O} 306.1601$. $[\alpha] \quad 29.9\left(\mathrm{c}=0.126, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl quinolin-2-ylphenylalaninate (6e). Following the procedure of $\mathbf{6}$ starting from methyl L-phenylalaninate, the product 6 e was obtained as a white solid (yield 61% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{dd}, J=8.8$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 3.77$ (d, $J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.39$ (ddd, $J=13.7,5.5$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (ddd, $J=13.9,5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,155.1$, $147.1,137.6,136.6,130.4,129.6,129.4,128.5,127.4,126.9,126.2,123.6,122.6,112.1,55.1$,
52.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 307.1437$, calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ 307.1441. [α] -2.9 (c $\left.=0.105, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(R)-2-(quinolin-2-ylamino)butanamide (6f). Following the procedure of $\mathbf{6}$ starting from 2aminobutanamide, the product $\mathbf{6 f}$ was obtained as a white solid (yield 85% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.15(\mathrm{ddd}, J=8.1,4.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 175.1,157.0,148.0,136.6,129.4,127.9,126.0,123.5,121.7,113.9$, 55.4, 25.8, 10.8. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found m / z 230.1288, calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}$ 230.1288. [α] 20)
-66.3 (c = 0.080, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$.
Methyl quinolin-2-ylglycinate ($\mathbf{6 g}$). Following the procedure of $\mathbf{6}$ starting from methyl glycinate, the product $\mathbf{6 g}$ was obtained as a white solid (yield 95% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}, 1 \mathrm{H}), 6.72(\mathrm{~d}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 171.8,155.7,147.6,137.4,129.5,127.4,126.4,123.7,122.5,112.1$, 52.3, 43.3, 29.7. HRMS (ESI) [M+H] found m/z 217.0973, calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} 217.0972$.

Methyl quinolin-2-yl-L-alaninate (6h). Following the procedure of $\mathbf{6}$ starting from methyl D-alaninate, the product $\mathbf{6 h}$ was obtained as a white solid (yield 93% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{p}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0,155.3,147.4$, $137.4,129.5,127.4,126.4,123.6,122.5,112.0,52.3,49.7,18.6$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found m / z 20)
231.1129, calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ 231.1128. [$\left.\alpha\right] \quad-23.7\left(\mathrm{c}=0.114, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl quinolin-2-yl-L-valinate (6i). Following the procedure of $\mathbf{6}$ starting from methyl Dvalinate, the product $6 \mathbf{i}$ was obtained as a white solid (yield 91% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=8.3$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{dd}, J=6.8,3.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1$,
$156.1,147.7,137.2,129.4,127.3,126.5,123.7,122.3,112.1,59.0,51.9,31.3,19.1,18.5 .[\alpha]$ $-145.6\left(\mathrm{c}=0.148, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl quinolin-2-yl-L-isoleucinate (6j). Following the procedure of $\mathbf{6}$ starting from methyl D-isoleucinate, the product $\mathbf{6 j}$ was obtained as a white solid (yield 82% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{dd}, J=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.83$ ($\mathrm{s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-$ $0.99(\mathrm{~m}, 3 \mathrm{H})$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 273.1603$, calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ 273.1598. [α] $-8.1\left(\mathrm{c}=0.078, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl quinolin-2-yl-L-serinate (6k). Following the procedure of $\mathbf{6}$ starting from methyl Dserinate, the product $\mathbf{6 k}$ was obtained as a white solid (yield 88% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53$ $(\mathrm{m}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=$ $10.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=10.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.8,155.6,146.2,138.2,130.0,127.5,125.6,123.5,123.0,112.5,65.5,58.0,52.9$. HRMS (ESI) 20)
$[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 247.1081$, calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$ 247.1077. $[\alpha] \quad 5.8\left(\mathrm{c}=0.136, \mathrm{CH}_{3} \mathrm{OH}\right)$.
Methyl quinolin-2-yl-L-threoninate (6l). Following the procedure of $\mathbf{6}$ starting from methyl L-threoninate, the product $6 \mathbf{l}$ was obtained as a white solid (yield 66% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{ddd}, J=8.4,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H})$, $4.96(\mathrm{dd}, J=7.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{qd}, J=6.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,156.0,147.1,137.6,129.6,127.4,126.3,123.8,122.7$, 112.4, 69.3, 59.9, 52.5, 20.4. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 261.1228$, calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$ 20)
261.1234. $[\alpha] \quad-113.8\left(\mathrm{c}=0.052, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl quinolin-2-yl-L-tyrosinate ($\mathbf{6 m}$). Following the procedure of $\mathbf{6}$ starting from methyl L-tyrosinate, the product $\mathbf{6 m}$ was obtained as a white solid (yield 63% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.54 (ddd, $J=8.4,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (ddd, $J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{dd}$, $J=13.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=13.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,155.5$, $155.5,147.0,138.1,130.4,129.9,127.5,127.3,125.8,123.6,122.7,115.6,111.5,55.5,52.3,37.2$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 323.1388$, calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$ 323.1390. [α] 12.4 ($\mathrm{c}=$ $\left.0.106, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl quinolin-2-yl-L-tryptophanate ($\mathbf{6 n}$). Following the procedure of $\mathbf{6}$ starting from methyl L-tryptophanate, the product $\mathbf{6 n}$ was obtained as a white solid (yield 70% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.29(\mathrm{~m}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=14.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=14.6,5.6$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,155.4,147.5,137.4,136.2,129.5,127.8,127.4$, $126.4,123.6,122.9,122.5,122.1,119.6,118.8,112.2,111.2,110.7,54.6,52.2,27.9$. HRMS (ESI) 20)
$[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 346.1560$, calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} 346.1550$. $[\alpha] \quad 2.5\left(\mathrm{c}=0.120, \mathrm{CH}_{3} \mathrm{OH}\right)$.
Methyl quinolin-2-yl-D-methioninate (6p). Following the procedure of $\mathbf{6}$ starting from methyl L-methioninate, the product $\mathbf{6 p}$ was obtained as a white solid (yield 96% for 2 steps). ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.06$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{td}, J=7.9,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{dq}, J=13.5,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{dd}, J=14.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,155.4,147.3,137.5,129.6$, $127.4,126.4,123.7,122.6,112.0,53.2,52.4,32.0,30.3,15.5$. HRMS $(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+}$found m / z 291.1167, calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ 291.1162. [α] -4.2 (c=0.095, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl $\mathbf{N}^{\mathbf{6}}$-(quinolin-2-yl)lysinate ($\mathbf{6 r}$). Following the procedure of $\mathbf{6}$ starting from methyl lysinate, the product $6 \mathbf{r}$ was obtained as a white solid (yield 53% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{t}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 2 \mathrm{H})$, $1.67(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.34(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 170.6,152.5,141.9$, 135.6, 132.5, 128.7, 125.4, 121.1, 117.0, 113.8, 53.6, 52.7, 41.6, 29.4, 26.9, 21.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 288.17$, calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} 288.1707$.

2-Amino-N-methyl-6-(quinolin-2-ylamino)hexanamide (6s). Following the procedure of 6 starting from 2-(2,2-dimethoxyethoxy)-4-methylquinoline, the product 6 A was obtained as a white solid (yield 50% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.67(\mathrm{~m}$, $2 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,156.9,147.8$, $137.3,129.5,127.4,125.8,123.2,121.9,111.2,77.2,76.9,76.7,55.0,41.3,34.7,29.3,25.7,23.1$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 287.1864$, calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}$ 287.1866.
\mathbf{N}-methyl-2-((4-methylquinolin-2-yl)amino)acetamide (6A). Following the procedure of $\mathbf{6}$ starting from 2-(2,2-dimethoxyethoxy)-4-methylquinoline, the product $\mathbf{6 A}$ was obtained as a white solid (yield 91% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}$, $1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H})$, $2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 170.9,156.7,147.8,144.1,129.3,126.4,124.2$, 123.8, 121.9, 113.5, 44.3, 26.0, 18.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 230.1291$, calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O} 230.1288$.

N-methyl-2-((8-methylquinolin-2-yl)amino)acetamide (6B). Following the procedure of $\mathbf{6}$ starting from 2-(2,2-dimethoxyethoxy)-8-methylquinoline, the product $\mathbf{6 B}$ was obtained as a white solid (yield 45% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=$ $8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=7.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 171.9,155.2,146.1,138.0,134.0,130.1,125.5,123.4,122.5,111.6$, 46.5, 26.0, 17.9. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found m / z 230.1282, calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O} 230.1288$.

2-((6-Chloroquinolin-2-yl)amino)-N-methylacetamide (6C). Following the procedure of $\mathbf{6}$ starting from 6-chloro-2-(2,2-dimethoxyethoxy)quinoline, the product 6 C was obtained as a white solid (yield 53% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$) $\delta 7.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.76$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 170.6,157.3,146.6,135.9,129.6,128.0,126.6,125.6$, 124.4, 114.9, 44.3, 26.0. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 250.0739$, calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}$ 250.0742 .

2-((8-Bromoquinolin-2-yl)amino)-N-methylacetamide (6D). Following the procedure of $\mathbf{6}$ starting from 8-bromo-2-(2,2-dimethoxyethoxy)quinoline, the product $\mathbf{6 D}$ was obtained as a white solid (yield 42% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90$ (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.10(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.5,156.7,144.4,137.9,133.1,127.3,124.8,123.0,121.2,113.2,46.8,26.0$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found m / z 294.0245, calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}$ 294.0237.

2-((3-Chloroisoquinolin-1-yl)amino)-N-methylacetamide (6E). Following the procedure of $\mathbf{6}$ starting from 3-chloro-1-(2,2-dimethoxyethoxy)isoquinoline, the product $\mathbf{6 E}$ was obtained as a white solid (yield 52% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.91(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.5,154.7,143.8,138.7,130.8,126.4$, 126.2, 122.0, 116.6, 109.4, 45.4, 26.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 250.0739$, calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O} 250.0742$.

N-methyl-2-((6-phenylquinolin-2-yl)amino)acetamide (6F). Following the procedure of $\mathbf{6}$ starting from 2-(2,2-dimethoxyethoxy)-6-phenylquinoline, the product $\mathbf{6 F}$ was obtained as a white solid (yield 75% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, 2 \mathrm{H})$, $7.76(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,156.0,146.7,140.7,138.0,135.7,129.3,128.9,127.1$, 127.1, 126.5, 125.4, 123.9, 112.3, 45.9, 26.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 292.1449$, calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O} 292.1444$.

2-((6-(4-Methoxyphenyl)quinolin-2-yl)amino)-N-methylacetamide (6G). Following the procedure of 6 starting from 2-(2,2-dimethoxyethoxy)-6-(4-methoxyphenyl)quinoline, the product 6G was obtained as a white solid (yield 54% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.91$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $170.8,159.0,157.0,147.1,136.9,133.3,132.8,128.1,128.0,126.6,124.7,123.8,114.8,114.1$, 55.6, 44.5, 26.0. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 322.1549$, calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} 322.155$.

N-methyl-2-((6-(4-(trifluoromethyl)phenyl)quinolin-2-yl)amino)acetamide
(6H).
Following the procedure of $\mathbf{6}$ starting from 2-(2,2-dimethoxyethoxy)-6-(4(trifluoromethyl)phenyl)quinoline, the product $\mathbf{6 H}$ was obtained as a white solid (yield 65% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.06(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{t}, 3 \mathrm{H}), 7.86(\mathrm{dd}, J=8.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 170.6$, $157.5,148.1,144.4,137.1,131.7,128.3,127.5,126.8,126.3,126.2,126.2,126.2,123.8,114.5$, 44.4, 26.0. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 360.1317$, calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{3} \mathrm{O} 360.1318$.

2-((6-(4-Cyanophenyl)quinolin-2-yl)amino)-N-methylacetamide (6I). Following the procedure of $\mathbf{6}$ starting from 4-(2-(2,2-dimethoxyethoxy)quinolin-6-yl)benzonitrile, the product $\mathbf{6 I}$ was obtained as a white solid (yield 78% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.11$ (s , $1 \mathrm{H}), 7.94(\mathrm{dt}, J=19.1,9.6 \mathrm{~Hz}, 7 \mathrm{H}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$
170.6, 157.6, 148.3, 144.9, 137.1, 133.3, 131.3, 128.2, 127.6, 126.9, 126.5, 123.7, 119.5, 114.5, 109.7, 44.4, 26.0. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 317.1401$, calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O} 317.1397$.

Methyl 4-(2-((2-(methylamino)-2-oxoethyl)amino)quinolin-6-yl)benzoate (6J). Following the procedure of 6 starting from methyl 4-(2-(2,2-dimethoxyethoxy)quinolin-6-yl)benzoate, the product $\mathbf{6 J}$ was obtained as a white solid (yield 57% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 4 \mathrm{H})$, $7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 170.7,166.6,157.5$, $148.1,145.0,137.1,131.9,130.3,128.3,128.2,127.0,126.8,126.3,123.8,114.4,56.5,52.6,26.0$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 350.1501$, calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} 350.1499$.

2-((7-(2-Fluorophenyl)-4-methylquinolin-2-yl)amino)-N-methylacetamide
(6K).
Following the procedure of 6 starting from 2-(2,2-dimethoxyethoxy)-7-(2-fluorophenyl)-4methylquinoline, the product $\mathbf{6 K}$ was obtained as a white solid (yield 70% for 2 steps). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H})$, $4.14(\mathrm{~s}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 172.4,160.3,158.4,156.5$, $146.9,144.3,136.1,130.1,128.6,125.4,123.8,123.0,122.7,122.3,115.3,112.2,43.7,24.5,16.8$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 324.1507$, calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{3} \mathrm{O} 324.1507$.
\mathbf{N}-(2-(2,5-dimethoxyphenyl)-2-hydroxyethyl)-2-(quinolin-2-ylamino)acetamide (8a).
Following the procedure of $\mathbf{6}$ starting from midodrine hydrochloride, the product $\mathbf{8 a}$ was obtained as a white solid (yield 72% for 2 steps). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta 7.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, 1 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}), 6.81(\mathrm{~d}, 1 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H})$, $6.70(\mathrm{dd}, J=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=7.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H}), 3.39(\mathrm{dd}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$) $\delta 172.5,156.8,153.8,150.3$, $147.3,137.2,131.1,129.1,127.2,125.4,123.7,122.0,112.5,112.3,111.1,66.7,54.9,54.6,45.1$, 44.6. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 382.1761$, calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} 382.1761$.
(1S,3S,5S)-2-((S)-2-((1s,3S,5R,7S)-3-hydroxyadamantan-1-yl)-2-(quinolin-2-
ylamino)acetyl)-2-azabicyclo[3.1.0]hexane-3-carbonitrile (8b). Following the procedure of 6 starting from saxagliptin, the product $\mathbf{8 b}$ was obtained as a white solid (yield 46% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.94(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=10.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{td}, J=6.2$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, J=13.8,10.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=13.7,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.32-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{dd}, J=25.7,12.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.73(\mathrm{q}, ~ J=14.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.59(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 1 \mathrm{H}), 1.17-1.11$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 171.7,156.6,147.5,136.9,129.2,127.5,126.1,123.8$, $122.2,119.5,113.2,68.7,58.9,46.2,45.3,44.6,44.2,40.7,38.3,38.0,37.7,35.5,30.6,30.4,30.3$, 20)
17.5, 13.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 443.2432$, calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2} 443.2442$. [α] $111.0\left(\mathrm{c}=0.091, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl quinolin-2-yl-L-tyrosyl-L-seryl-L-leucinate (8c). Following the procedure of 6 starting from methyl tyroserleutide, the product $\mathbf{8 c}$ was obtained as a white solid (yield 56% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.84$
$(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}$, $3 \mathrm{H}), 3.19-3.17(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.75(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 173.1,173.1,170.5,156.8,156.1,147.9,136.8,130.6,129.4,129.0$, $127.9,126.2,123.5,121.9,115.3,113.6,62.1,56.7,55.3,52.3,50.6,49.1,37.2,24.5,23.1,21.7$. (2)

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 523.2554$, calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{6}$ 523.2551. [α] -7.2 (c $=$ $\left.0.107, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(S)-N-(4-(hydroxymethyl)phenyl)-2-((S)-3-methyl-2-(quinolin-2-ylamino)butanamido)-

5-ureidopentanamide (8d). Following the procedure of 6 starting from Val-Cit-PAB-OH, the product $8 \mathbf{d}$ was obtained as a white solid (yield 56% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$) $\delta 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{ddd}, J=8.4,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.53$ $(\mathrm{m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{dt}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dt}, J=13.5$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 2 \mathrm{H})$, $1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD-d $\mathrm{d}_{4} \delta 174.4,170.9$, $160.8,157.0,147.4,137.4,137.0,136.9,129.0,127.1,127.1,125.4,123.6,121.9,120.0,112.6$, $63.4,60.9,53.4,48.4,30.4,29.3,26.3,18.7,17.9$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 507.2724$, (20)
calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{4}$ 507.2714. $[\alpha] \quad-186.3\left(\mathrm{c}=0.096, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(S)-2-((S)-2-((7-(2-fluorophenyl)-4-methylquinolin-2-yl)amino)-3-methylbutanamido)-N-(4-(hydroxymethyl)phenyl)-5-ureidopentanamide (8e). Following the procedure of 6 starting from Val-Cit-PAB-OH, the product $\mathbf{8 e}$ was obtained as a white solid (yield 52% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD- d_{4}) $\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=9.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H})$, $4.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.22(\mathrm{~m}$, $1 \mathrm{H}), 1.89(\mathrm{dt}, J=14.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$) $\delta 175.8,172.3,162.2,160.3$, 158.7, $148.8,146.2,138.8,138.3,137.9,132.1,130.5,130.4,128.4,127.4,125.7,124.8,124.6,124.1$, $121.5,117.2,117.0,114.2,64.8,62.4,54.8,31.7,30.7,27.7,20.1,19.3,18.7$. HRMS (ESI) 20)
$[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 615.3081$, calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{FN}_{6} \mathrm{O}_{4}$ 615.309. $[\alpha] \quad-0.8\left(\mathrm{c}=0.105, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(S)-1-((4R,7S,10S,13S,16S,19S)-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-13-((S)-sec-butyl)-16-(4-hydroxybenzyl)-6,9,12,15,18-pentaoxo-19-(quinolin-2-ylamino)-1,2-dithia-5,8,11,14,17-pentaazacycloicosane-4-carbonyl)-N-((S)-1-((2-amino-2-oxoethyl)amino)-4-methyl-1-oxopentan-2-yl)pyrrolidine-2-carboxamide (8f). Following the procedure of $\mathbf{6}$ starting from oxytocin, the product $\mathbf{8 f}$ was obtained as a white solid (yield 42% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta 8.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, 4 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=9.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{dt}, J=10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dt}, J=13.6,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 4 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~s}$, $1 \mathrm{H}), 2.39(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{qd}, J=9.7,9.3,5.1$ $\mathrm{Hz}, 4 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}$,
$3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$) δ 176.6, 173.7, 173.5, 173.2, 172.9, $172.1,168.4,167.7,157.7,157.4,155.6,133.1,129.8,128.7,127.2,125.9,121.8,117.7,115.8$, $114.4,113.5,61.0,60.8,55.8,54.9,53.6,53.0,52.3,50.6,48.5,48.2,41.9,39.7,37.7,35.7,31.4$, $29.0,25.6,24.5,24.5,22.1,20.5,14.6,10.2$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 1132.4742$, calcd for 20)
$\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{~N}_{13} \mathrm{O}_{12} \mathrm{~S}_{2} 1132.4742 .[\alpha] \quad-110.2\left(\mathrm{c}=0.077, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(S)-N-((S)-1-amino-3-hydroxy-1-oxopropan-2-yl)-1-(quinolin-2-yl-D-tyrosyl-L-alanyl-D-phenylalanylglycyl-D-tyrosyl)pyrrolidine-2-carboxamide (8g). Following the procedure of 6 starting from dermorphin, the product $\mathbf{8 g}$ was obtained as a white solid (yield 47% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.25$ (s, 1H), 9.17 (s, 1H), 8.27 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.20(\mathrm{~s}, 1 \mathrm{H})$, $8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=13.4,5.1$ $\mathrm{Hz}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H})$, $4.47(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.54(\mathrm{~m}$, $4 \mathrm{H}), 2.97(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.93(\mathrm{~d}, J=51.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 172.5$, $172.3,172.3,171.6,171.6,171.0,168.8,156.6,156.3,156.1,147.9,138.2,136.8,130.7,130.6$, $129.6,129.5,128.8,128.4,128.1,127.8,126.6,126.2,123.5,121.9,115.5,115.3,113.6,62.0$, $60.4,56.5,55.5,54.1,53.1,48.5,47.4,42.0,38.1,37.5,36.7,29.3,24.9,18.8$. HRMS (ESI) 20)
$[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 928.3993$, calcd for $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{~N}_{9} \mathrm{O}_{10} 928.3999 .[\alpha] \quad-19.9\left(\mathrm{c}=0.098, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(4R,7S,10S,13R,16S,19R)-13-((1H-indol-3-yl)methyl)-10-(4-aminobutyl)-16-benzyl-N-(1,3-dihydroxybutan-2-yl)-7-((R)-1-hydroxyethyl)-6,9,12,15,18-pentaoxo-19-((R)-3-phenyl-2-(quinolin-2-ylamino)propanamido)-1,2-dithia-5,8,11,14,17-pentaazacycloicosane-4carboxamide ($\mathbf{8 h}$). Following the procedure of $\mathbf{6}$ starting from otreotide, the product $\mathbf{8 h}$ was obtained as a white solid (yield 41% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.27(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=14.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.16-$ $7.10(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{dd}, J=8.8,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J$ $=6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=10.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 3.18-2.90(\mathrm{~m}, 8 \mathrm{H}), 2.86(\mathrm{dd}, J=13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dq}, J=18.7$, 12.4, 9.4 Hz, 2H), $1.35-1.23(\mathrm{~m}, 9 \mathrm{H}), 0.62-0.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right) \delta$ $173.9,173.2,171.2,171.0,170.9,168.8,152.3,136.3,136.2,135.4,129.0,128.7,128.2,128.1$, $127.6,126.9,126.7,126.1,125.3,123.1,121.1,120.8,118.3,117.7,110.7,108.4,66.8,61.2,59.3$, $57.0,56.1,55.8,54.5,53.3,53.0,52.2,48.2,38.8,38.6,38.5,29.5,26.0,25.5,21.5,18.7,18.4$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 1146.4891$, calcd for $\mathrm{C}_{58} \mathrm{H}_{72} \mathrm{~N}_{11} \mathrm{O}_{10} \mathrm{~S}_{2}$ 1146.49. $[\alpha] \quad-31.8(\mathrm{c}=$ $\left.0.067, \mathrm{CH}_{3} \mathrm{OH}\right)$.
(4R,7S,10S,13R,16S,19R)-13-((1H-indol-3-yl)methyl)-10-(4-aminobutyl)-16-benzyl-N-(1,3-dihydroxybutan-2-yl)-7-((R)-1-hydroxyethyl)-19-((R)-2-((6-methoxyquinolin-2-yl)amino)-3-phenylpropanamido)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentaazacycloicosane-
4-carboxamide (8i).Following the procedure of $\mathbf{6}$ starting from otreotide, the product $\mathbf{8 i}$ was
obtained as a white solid (yield 46% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.35$ (d, $J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=27.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64$ $(\mathrm{m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=8.4,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H})$, $5.30(\mathrm{t}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{dd}, J=8.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.33(\mathrm{~m}, 1 \mathrm{H})$, $4.25(\mathrm{dd}, J=10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 4 \mathrm{H})$, $3.77(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 3.23-2.94(\mathrm{~m}, 8 \mathrm{H}), 2.89$ (dd, $J=13.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{tt}, J=20.1,10.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 9 \mathrm{H}), 0.69-0.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD- d_{4}) $\delta 174.2,173.6,171.6,171.3,169.2,160.0,152.5,138.6,136.6,136.5$, $135.8,131.2,129.5,129.4,129.3,129.0,128.4,128.0,127.8,127.2,127.1,126.4,125.2,123.4$, $122.0,121.1,118.6,118.0,114.2,110.9,108.8,67.1,59.7,57.3,56.4,54.8,54.4,53.5,53.3,52.6$, 48.4, 38.8, 31.6, 28.9, 26.3, 25.5, 22.3, 19.0, 13.0. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found $\mathrm{m} / \mathrm{z} 1252.5299$, 20)
calcd for $\mathrm{C}_{65} \mathrm{H}_{78} \mathrm{~N}_{11} \mathrm{O}_{11} \mathrm{~S}_{2}$ 1252.5318. $[\alpha] \quad 1.8\left(\mathrm{c}=0.055, \mathrm{CH}_{3} \mathrm{OH}\right)$.

3. Biological studies

3.1 Cell prolifation inhibition assay

The cancer cell lines BEL-7402 and SMMC-7721 were purchased from the American Type Culture Collection (Manassas, VA, USA). All cell lines were maintained in DMEM containing 10\% fetal bovine serum at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in a humid environment.

Tumor cells were seeded in the 96 -wells plates overnight and then were treated with increasing doses of compounds in triplicate for 72 h . The anti-proliferative activities were accessed by SRB assay. Then the OD was measured at 510 nm wavelength using Synergy H4 Hybrid reader (BioTek, Winooski, VT, USA) using Gen 5.0 software (BioTek). The IC_{50} values were calculated using the software Prism 5 (GraphPad Software, Inc). The test results are shown in the following table.

Table S1. Liver cancer cell proliferation inhibition assays of selected compounds

Compound	Proliferation inhibition $\mathrm{IC}_{50}(\mu \mathrm{M})$	
	BEL-7402	SMMC-7721
YSL	>100	>100
YSL-M	>100	>100
$\mathbf{8 c}$	52.57 ± 2.47	63.30 ± 6.35

$3.2\left[{ }^{35}\right.$ S]GTP ${ }_{\gamma}$ S Binding Assay

Transfer $10 \mu \mathrm{l}$ standard protein to a centrifuge tube (final concertration $0.5 \mathrm{mg} / \mathrm{ml}$). Transfer the sample and $0,1,2,4,8,12,16,20 \mu \mathrm{l}$ bovine serum albumin (BSA) standard protein into the wells of a 96-well plate. The solution was supplemented to $20 \mu \mathrm{l}$ using diluted standard. $200 \mu \mathrm{l}$ of BCA working solution was added to each well then the plate was placed at $37{ }^{\circ} \mathrm{C}$ for 30 min . Meanwhile, set the plate reader to read absorption at 560 nm . The protein concentration was calculated from the standard curve.

The prepared membrane receptor is diluted to the desired concentration with a reaction buffer (R.B). Load according to the following table (unit: $\mu \mathrm{l}$).

	R.B	$\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTP}_{\gamma} \mathrm{S}$ $0.1-0.2 \mathrm{nM}$	$\mathrm{GTP}_{\gamma} \mathrm{S}$ $20 \mu \mathrm{M}$	GDP $40 \mu \mathrm{M}$	Agonist	Protein $20-30 \mu \mathrm{~g}$
NS binding	30	10	10	0	0	50
Basal	30	10	0	10	0	50
Agonist	20	10	0	10	10	50

The reaction tube was incubated for 1 hour in a $27{ }^{\circ} \mathrm{C}$ water bath, filtered under reduced pressure on a glass fiber membrane, and flash-counted. Calculate according to the following formula: $\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTP}_{\gamma} \mathrm{S}$ binding rate $=100 \times\left(\mathrm{cpm}_{\text {sample }}-\mathrm{cpm}_{\text {non-specific }}\right) /\left(\mathrm{cpm}_{\text {basal }}-\mathrm{cpm}_{\text {non-specific }}\right)$

Table S2. μ-opioid receptor (MOR) agonist activity assays

Compound	(MOR) (mean \pm sem $)$	
	$\mathrm{EC}_{50}(\mathrm{nM})$	$\operatorname{Emax}(\%)$
Dermorphin	61.3 ± 10.6	218.8 ± 7.1
$\mathbf{8 g}$	223.9 ± 25.1	202.7 ± 5.1

3.3 In vitro liver stability assessment

Adhering fat and connective tissue were removed from 5 g fresh pig liver. Wash it with cold saline, blot water on the surface with filter paper and weigh it. Add appropriate PBS buffer, cut the pig liver with scissor and make a 20 ml homogenate with a homogenizer with a frequency of $30 / \mathrm{s}$ for 4 min . Tested compound (final concentration $1 \mathrm{mg} / \mathrm{ml}$ and co-solvent ($1 \% \mathrm{DMSO}$)) were added to 20 ml of pig liver homogenate, stir well and stand. Take 1 ml of the sample twice in the six time periods of $0.25 \mathrm{~h}, 0.5 \mathrm{~h}, 1 \mathrm{~h}, 1.5 \mathrm{~h}, 2 \mathrm{~h}$ and 3 h respectively and methanol ($500 \mu \mathrm{l}$) was added to terminate the reaction. After centrifugation ($1000 \mathrm{rpm}, 6 \mathrm{~min}$), the supernatant was separated and extracted twice with $750 \mu \mathrm{l}$ of water-saturated n-butanol. Then extracted samples were analyzed by HPLC. Reversed phase HPLC was carried out on an Agilent Zorbax SB-C18 column ($5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$) from Agilent, with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ at $25^{\circ} \mathrm{C}$. The gradient conditions used are $50 \% \mathrm{~A}(\mathrm{MeOH}), 50 \% \mathrm{~B}\left(\mathrm{H}_{2} \mathrm{O}+0.2 \% \mathrm{CH}_{3} \mathrm{COOH}\right)$, to $95 \% \mathrm{~A}$ and $5 \% \mathrm{~B}$ in 16 \min. Acquisition for the UV-DAD detector was set to 210, 254, and 280 nm .

Figure S2. The concentration of 8e changes with time

4. DFT Studies

4.1 Computational Methods

All computations were performed with the Gaussian $09{ }^{[1]}$ series of programs. All the structures were optimized using the density functional M06-2X methods ${ }^{[2]}$ at the $6-311+\mathrm{G}(\mathrm{d})$ level. A Solvent effects of 1-butanol were considered by using the SMD model ${ }^{[3]}$. Frequencies calculations were performed to judge them as local minima or transition states and obtain the thermal corrections to the Gibbs free energies and enthalpies. The Gibbs free energies were used to describe the reaction energies.
4.2 M06-2X calculated energies for reported complexes and transition states

Geometry	E^{1}	H^{2}	G^{3}	IF^{4}
$\mathbf{5 a}$	-669.441609	-669.204898	-669.255131	
$\mathbf{7}$	-303.8408662	-303.71088	-303.749907	
$\mathbf{T S}$	-973.2815993	-972.914091	-972.981862	-297.80
$\mathbf{9}$	-973.288612	-972.918828	-972.986512	

${ }^{1}$ Single point energies calculated by M06-2 X at the $6-311+\mathrm{g}(\mathrm{d})$ level in 1-butanol solvent.
${ }^{2}$ Enthalpies calculated by M06-2 X at the $6-311+\mathrm{g}(\mathrm{d})$ level in 1-butanol solvent.
${ }^{3}$ Gibbs free energies calculated by M06-2X at the $6-311+\mathrm{g}(\mathrm{d})$ level in 1-butanol solvent. ${ }^{4}$ M06-2X/6-311+g(d) calculated imaginary frequencies for transition states.
The unit of energy values in the above table are Hartree/Particle (a.u.).
4.3 Cartesian coordinates of minimum energy structures

5a

C 2.385000 -2.003000 0.303000
C $1.076000-1.5760000 .371000$
C $0.807000-0.2170000 .166000$
C $1.8400000 .700000-0.121000$
C $3.1660000 .225000-0.184000$
С $3.434000-1.1070000 .028000$
H $2.606000-3.0530000 .463000$
H $0.274000-2.2770000 .572000$
C $1.5100002 .070000-0.345000$
H $3.9620000 .930000-0.400000$
H 4.453000-1.472000 -0.019000
C $0.2240002 .521000-0.284000$
C -0.7680001 .5730000 .020000
H $2.3140002 .763000-0.568000$
H -0.060000 3.551000 -0.449000
O -2.047000 1.8380000 .119000
C -2.725000 0.6490000 .608000
C - 1.714000 - 0.4860000 .415000
H -2.959000 0.8220001 .657000
H -3.627000 0.5070000 .018000
N - 0.4790000 .2910000 .239000
O -1.894000 -1.226000 -0.750000
C - $2.798000-2.314000-0.572000$

H -3.777000 -1.961000 -0.237000
H -2.900000 -2.794000 -1.543000
H -2.398000 -3.028000 0.154000
H-1.635000 -1.131000 1.294000

7
C $0.0620000 .527000-0.008000$
O 0.6420001 .6150000 .081000
N $0.707000-0.641000-0.051000$
H $0.141000-1.474000-0.146000$
C $2.154000-0.724000-0.004000$
H $2.443000-1.772000-0.026000$
H $2.604000-0.214000-0.859000$
H $2.538000-0.2700000 .911000$
C -1.452000 $0.462000-0.096000$
H - 1.8440001 .1750000 .637000
H-1.715000 $0.848000-1.085000$
N -1.977000 -0.892000 0.044000
H -2.116000 -1.116000 1.024000
H - $2.885000-0.960000-0.400000$

TS

C - $4.3230001 .047000-0.497000$
C -3.012000 1.247000-0.097000

C-2.222000 0.1360000 .204000
C -2.737000 -1.171000 0.103000
C -4.069000-1.339000-0.302000
C - $4.856000-0.243000-0.602000$
H -4.938000 1.907000-0.739000
H -2.601000 $2.248000-0.028000$
C - 1.886000 -2.287000 0.454000
H -4.469000 -2.345000 -0.374000
H -5.883000 -0.380000 -0.919000
C -0.585000-2.120000 0.758000
C -0.049000 - 0.7780000 .694000
H - $2.326000-3.2790000 .473000$ H 0.082000 -2.931000 1.022000
O $1.071000-0.4480001 .336000$
C 1.0570000 .9830001 .585000
C -0.182000 1.5070000 .848000
H 0.9780001 .1220002 .662000
H 1.9830001 .4040001 .202000
N - 0.9120000 .2690000 .656000
O 0.082000 2.043000-0.423000
C $0.6460003 .348000-0.371000$
H 1.6470003 .3330000 .071000 H $0.7160003 .700000-1.398000$ H 0.0020004 .0220000 .205000 H - 0.7610002 .2130001 .450000 C $3.083000-0.498000-0.748000$ O $2.9690000 .713000-0.946000$ N $4.150000-1.040000-0.155000$ H 4.172000-2.036000 0.007000 C $5.278000-0.2270000 .270000$ H $6.027000-0.8800000 .712000$ H $5.7180000 .296000-0.581000$ H 4.9640000 .5100001 .011000 C 2.013000-1.464000-1.226000 H $2.279000-1.767000-2.244000$ H $1.985000-2.364000-0.607000$ N $0.714000-0.800000-1.190000$ H $0.8030000 .173000-1.490000$ H $0.041000-1.263000-1.797000$

C - $4.3690001 .009000-0.523000$
C - $3.0430001 .228000-0.171000$
C -2.230000 0.1360000 .136000
C - $2.744000-1.1740000 .094000$
C -4.081000-1.365000 -0.264000
C -4.893000 -0.284000 -0.575000
H -4.997000 1.858000-0.768000
H -2.641000 2.235000-0.148000
C - $1.871000-2.2740000 .484000$
H -4.476000 -2.376000 -0.287000
H -5.928000 -0.443000 -0.853000
C - $0.560000-2.1030000 .698000$
C 0.036000 -0.759000 0.463000
H -2.320000 -3.253000 0.621000
H 0.101000 -2.902000 1.013000
O $1.076000-0.4120001 .306000$
C 0.9630000 .9920001 .641000
C - 0.2190001 .5150000 .816000
H 0.7640001 .0660002 .709000
H 1.9020001 .4840001 .391000
N -0.908000 0.2880000 .542000
O $0.1630002 .087000-0.421000$
C $0.7020003 .396000-0.301000$
H 1.6230003 .4020000 .289000
H $0.9270003 .737000-1.310000$
H -0.029000 4.0690000 .158000
H - 0.8470002 .2130001 .378000
C $3.086000-0.524000-0.694000$
O $2.9580000 .683000-0.896000$
N $4.186000-1.081000-0.194000$
H $4.199000-2.075000-0.013000$
C $5.352000-0.2810000 .143000$
H 5.1320000 .3980000 .969000
H 6.157000-0.951000 0.437000
H $5.6730000 .304000-0.720000$
C $1.966000-1.480000-1.082000$
H 2.113000 -1.783000 -2.120000
H $1.930000-2.371000-0.456000$
N $0.683000-0.747000-0.990000$
H $0.8530000 .239000-1.249000$
H -0.002000 -1.126000 -1.649000

5. References

[1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
[2] Zhao Y., Truhlar D. G.; Theoretical Chemistry Accounts, 2008, 120, 215-241.
[3] Marenich A. V., Cramer C. J., Truhlar D. G. J. Phys. Chem. B, 2009, 113, 6378-6396.

6. NMR spectra of products

${ }^{1} \mathrm{H}$ NMR for 6 ~

EO-LP-01-44-20181103/3
E0-LP-01-44-20181103 CDC13 BB
∞
${ }^{13} \mathrm{C}$ NMR for 6 -

$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\infty}$
$\underset{\mid}{=}$

113等- H11.dq. बd
${ }^{1} \mathrm{H}$ NMR for $\mathbf{6 g}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{6 j}$

$\begin{array}{lllllllllllllllllllllllllllll}1,1 \\ 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.1 \\ \mathbf{f 1}(\mathrm{ppm})\end{array}$

180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	
		160		140					ppm)							0		0

${ }^{1} \mathrm{H}$ NMR for 6 r

E0-7372-120/33 0 CDC13 BB + DEPT135 $12-120 \quad 1$
${ }^{13} \mathrm{C}$ NMR for $\mathbf{6 s}$

(103-A2/1

${ }^{13} \mathrm{C}$ NMR for 6 F

${ }^{13} \mathrm{C}$ NMR for 6 H

亯

180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

(
()

-43.7292
-24.4542
-16.8007
${ }^{3} \mathrm{C}$ NMR for 6 K

90

${ }^{1} \mathrm{H}$ NMR for $\mathbf{8 a}$

(

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

${ }^{1} \mathrm{H}$ NMR for $\mathbf{8 g}$

$\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{8 h}$

1H NMR for 8 i

${ }^{13}$ C NMR for 8 i

