Supporting information for

An Electrochemical Off-On Method for Pyrimidin-2(1H)-ones Synthesis via Three-component Cyclization

Yanyan Kong, Yabo Li, Mengmeng Huang, Jung Keun Kim* and Yangjie Wu*

College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P.R. China.

Experimental details and spectroscopic data

Contents

1. General Information	
2. Experimental Procedure	S2
3. Cyclic Voltammetry Experiments	S2
4. Characterization Data	S4
5. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S12
6. Determination of Structure of 4a	

1. General Information

All reagents were used in analytical grades and were obtained from commercial sources without further purification unless otherwise noted. Some diketones were purchased from commercial suppliers or prepared according to reported procedures (1i, 1k-1n, 1q-1r).¹ Electrolysis was conducted using a DC power supply (MWSTEK DP3005B) in constant current mode. The anode electrode is platinum plate electrode (10 mm \times 10 mm \times 0.2 mm) and cathode electrode is graphite rod ($\Phi = 6$ mm). Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminum plates with F-254 indicator, visualized by irradiation with UV light. Flash chromatography columns were packed with 200-300 mesh silica gel and silica gel was purchased from Qing Dao Hai Yang Chemical Industry. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer in CDCl₃. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz relative to tetramethylsilane as internal standard ($\delta = 0$ ppm). For the ¹⁹F spectra, α -trifluorotoluene served as external standard (δ = -63.9 ppm). High resolution mass spectra (HRMS) were obtained on an Agilent LC-MSD-Trap-XCT spectrometer with micromass MS software using electrospray ionization (ESI). The Cyclic voltammetry (CV) was recorded in CH₃CN by CHI650A.

2. Experimental Procedure

General procedure for the electrochemical one-pot synthesis of pyrimidin-2(1*H*)ones

Compounds 1 (0.3 mmol), 2 (0.75 mmol) and 3 (0.6 mmol) were heated at 105 °C under air for 9 h. Then EtOH (5 mL) and TBAPF₆ (0.5 mmol) were added into the reaction mixture. The resulting solution was electrolyzed with a C|Pt electrode under a constant current (5 mA) in an undivided cell at 25 °C for 10 hours. After electrolysis, the product was purified by column chromatography on silica gel (elute: dichloromethane/EtOH 80/1-40/1, v/v) to give the desired product.

3. Cyclic Voltammetry Experiments

Cyclic voltammetry was measured under Ar balloon protection with conventional threeelectrode system (Reference electrode: Ag/AgCl, working electrode: Glassy carbon, counter electrode: Pt wire, Supporting electrolyte: 0.1 M TBAPF₆ in CH₃CN) at different scan rates (40, 50, 60, 80, 100, 120, 150, 200, 220, 250, and 280 mV/s).

Figure S1. Cyclic voltammograms of 1.0 mM 5a at different scan rates. Curves are obtained at 40, 50, 60, 80, 100, 120, 150, 200, 220, 250, and 280 mV/s, respectively.

Figure S2. The plot of peak current vs. scan rate

Figure S3. The relationship between E_{pa} and $\ln v$.

The peak current increased linearly with the scan rate in the range of 40-400 mV/s and the equation could be expressed as follows: y = 0.05803x + 12.7320, R = 0.9822. It could be seen that the oxidation of compound **5a** was an absorption-controlled process. For an adsorption-controlled and irreversible electrode process, according to Laviron method,² E_{pa} is defined by

the following equation:

 $E_{pa} = E^0 + (RT/\alpha nF) \ln (RTk^0/\alpha nF) + (RT/\alpha nF) \ln \nu$

where α is transfer coefficient, k^0 is standard rate constant of the reaction, n is electron transfer number involved in the rate-determining step, v is scan rate, and E^0 is formal potential. Other symbols have their usual meanings. Thus, the value of an can be easily calculated from the slope of E_{pa} -lnv. In this system, the slope is 0.02071. Generally, transfer coefficient α was assumed as 0.5,³ so the value of the number of electron (n) was calculated to be 2.

4. Characterization Data

5-benzoyl-6-methyl-4-(p-tolyl)pyrimidin-2(1H)-one (4a):

Yellow solid (65.7 mg, 72%). mp. 109.8-112.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.91 (bs, 1H), 7.70-7.64 (m, 2H), 7.49-7.42 (m, 3H), 7.35-7.28 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.7, 158.8, 141.7, 137.2, 133.8, 129.3, 129.3, 129.0, 128.7, 116.9, 21.4. HRMS (ESI) calcd. for C₁₉H₁₇N₂O₂ (M+H)⁺: 305.1285, found: 305.1284.

5-benzoyl-6-methyl-4-phenylpyrimidin-2(1H)-one (4b):

White solid (59.2 mg, 68%). mp. 180.1-183.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.91 (bs, 1H), 7.68-7.61 (m, 2H), 7.58-7.52 (m, 2H), 7.47-7.39 (m, 1H), 7.33-7.28 (m, 2H), 7.26-7.18 (m, 3H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.4, 158.8, 137.2, 133.8, 131.1, 129.3, 128.9, 128.7, 128.5, 117.1. HRMS (ESI) calcd. for C₁₈H₁₅N₂O₂ (M+H)⁺: 291.1128, found: 291.1127.

5-benzoyl-4-(4-methoxyphenyl)-6-methylpyrimidin-2(1H)-one (4c):

White solid (70.2mg, 73%). mp. 168.9-171.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.86 (bs, 1H), 7.72-7.64 (m, 2H), 7.56 (d, J = 8.8 Hz, 2H), 7.48-7.42 (m, 1H), 7.35-7.28 (m, 2H), 6.73 (d, J = 8.8 Hz, 2H), 3.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.9, 162.0, 158.8, 137.2, 133.8, 131.0, 129.3, 128.7, 116.6, 113.9, 55.3. HRMS (ESI) calcd. for C₁₉H₁₇N₂O₃ (M+H)⁺: 321.1234, found: 321.1234.

5-benzoyl-4-(4-fluorophenyl)-6-methylpyrimidin-2(1H)-one (4d):

White solid (52.7 mg, 57%). mp. 110.2-113.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 14.00 (bs, 1H), 7.68-7.63 (m, 2H), 7.61-7.55 (m, 2H), 7.50-7.44 (m, 1H), 7.36-7.30 (m, 2H), 6.91 (t, *J* = 8.6 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.3, 164.3 (d, *J* = 253.1 Hz), 158.7, 137.1, 134.0, 131.3 (d, *J* = 8.8 Hz), 129.3, 128.8, 117.0, 115.7 (d, *J* = 22.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -108.1. HRMS (ESI) calcd. for C₁₈H₁₄FN₂O₂ (M+H)⁺: 309.1034, found: 309.1035.

5-benzoyl-4-(4-bromophenyl)-6-methylpyrimidin-2(1H)-one (4e):

Yellow solid (56.5mg, 51%). mp. 174.2-176.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.98 (bs, 1H), 7.70-7.63 (m, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.46-7.40 (m, 2H), 7.39-7.31 (m, 4H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.2, 158.7, 137.0, 134.2, 131.7, 130.5, 129.3, 128.9, 126.1, 117.0. HRMS (ESI) calcd. for C₁₈H₁₄BrN₂O₂ (M+H)⁺: 369.0233, found: 370.0265.

5-benzoyl-6-methyl-4-(4-nitrophenyl)pyrimidin-2(1H)-one (4f):

Yellow solid (12.1 mg, 12%). mp. 117.4-119.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.81 (bs, 1H), 8.11-8.05 (m, 2H), 7.75-7.70 (m, 2H), 7.70-7.64 (m, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.39-7.34 (m, 2H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.5, 158.5, 149.0, 136.9, 134.5, 129.9, 129.3, 129.1, 123.5, 117.3. HRMS (ESI) calcd. for C₁₈H₁₄N₃O₄ (M+H)⁺: 336.0979, found: 336.0979.

5-benzoyl-4-(2-chlorophenyl)-6-methylpyrimidin-2(1H)-one (4g):

Yellow solid (37.0 mg, 38%). mp. 138.4-140.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.67-7.60 (m, 2H), 7.47-7.40 (m, 1H), 7.35-7.28 (m, 2H), 7.24-7.17 (m, 1H), 7.16-7.05 (m, 3H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.2, 158.0, 137.4, 133.7, 131.8, 131.2, 130.4, 129.9, 129.1, 128.5, 126.5, 118.4. HRMS (ESI) calcd. for C₁₈H₁₄ClN₂O₂ (M+H)⁺: 325.0738, found: 325.0740.

6-methyl-5-(4-methylbenzoyl)-4-(p-tolyl)pyrimidin-2(1H)-one (4i):

White solid (40.1 mg, 42%). mp. 173.4-176.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.85 (bs, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 7.04 (d, J = 7.7 Hz, 2H), 2.41 (s, 3H), 2.34 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.3, 158.9, 145.0, 141.7, 134.8, 129.6, 129.5, 129.3, 129.0, 117.1, 21.8, 21.4. HRMS (ESI) calcd. for C₂₀H₁₉N₂O₂ (M+H)⁺: 319.1441, found: 319.1445.

5-(4-methoxybenzoyl)-6-methyl-4-(p-tolyl)pyrimidin-2(1H)-one (4j):

Yellow solid (32.1 mg, 32%). mp. 114.6-117.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.86 (bs, 1H), 7.47 (d, J = 8.1 Hz, 2H), 7.28-7.25 (m, 1H), 7.22-7.18 (m, 2H), 7.05 (d, J = 8.0 Hz, 2H), 7.03-6.98 (m, 1H), 3.79 (s, 3H), 2.44 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.1, 164.1, 158.8, 141.7, 131.9, 130.3, 129.3, 128.9, 117.2, 114.0, 63.8, 55.5, 21.4. HRMS (ESI) calcd. for C₂₀H₁₉N₂O₃ (M+H)⁺: 335.1390, found: 335.1391.

5-(4-fluorobenzoyl)-6-methyl-4-(p-tolyl)pyrimidin-2(1H)-one (4k):

Yellow solid (71.6 mg, 74%). mp. 168.5-170.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.81 (bs, 1H), 7.68 (dt, J_1 = 5.4 Hz, J_2 = 8.8 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 7.00-6.93 (m, 2H), 2.46 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.0, 165.9 (d, J = 256.8 Hz), 158.7, 114.94, 133.7 (d, J = 2.9 Hz), 132.0 (d, J = 9.5 Hz), 129.3, 128.9, 116.5, 115.9 (d, J = 22.0 Hz), 21.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -103.2. HRMS (ESI) calcd. for C₁₉H₁₆FN₂O₂ (M+H)⁺: 323.1190, found: 323.1192.

5-(4-bromobenzoyl)-6-methyl-4-(p-tolyl)pyrimidin-2(1H)-one (4l):

White solid (63.2 mg, 55%). mp. 204.6-207.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.81 (bs, 1H), 7.54-7.48 (m, 2H), 7.47-7.40 (m, 4H), 7.05 (d, J = 7.8 Hz, 2H), 2.45 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.6, 158.7, 142.1, 136.0, 132.0, 130.7, 129.4, 129.1, 128.9, 116.3, 21.4. HRMS (ESI) calcd. for C₁₉H₁₆BrN₂O₂ (M+H)⁺: 383.0390, found: 383.0389.

6-methyl-4-(p-tolyl)-5-(4-(trifluoromethyl)benzoyl)pyrimidin-2(1H)-one (4m):

Yellow solid (52.5 mg, 47%). mp. 181.5-184.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.86 (bs, 1H), 7.72 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.02 (d, J = 7.8 Hz, 2H), 2.50 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.5, 158.6, 142.2, 140.0, 134.6 (q, J = 33.0 Hz), 129.5, 129.0, 125.6 (q, J = 3.7 Hz), 128.3 (d, J = 272.9 Hz), 127.4, 116.2, 21.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.3. HRMS (ESI) calcd. for C₂₀H₁₆F₃N₂O₂ (M+H)⁺: 373.1158, found: 373.1160.

5-(3,4-difluorobenzoyl)-6-methyl-4-(p-tolyl)pyrimidin-2(1H)-one (4n):

White solid (48.0 mg, 47%). mp. 182.4-184.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.87 (bs, 1H), 7.57-7.49 (m, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.37-7.31 (m, 1H), 7.10-6.99 (m, 3H), 2,48 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 158.6, 153.8 (dd, $J_I = 13.2$ Hz, $J_2 = 259.0$ Hz), 150.3 (dd, $J_I = 13.2$ Hz, $J_2 = 251.6$ Hz), 142.2, 134.4, 129.5, 128.9, 126.5 (q, J = 2.9 Hz), 118.2 (d, J = 18.3 Hz), 117.5 (d, J = 18.3 Hz), 115.9, 21.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -127.8 (d, J = 17.7 Hz), -135.2 (d, J = 21.8 Hz). HRMS (ESI) calcd. for C₁₉H₁₅F₂N₂O₂ (M+H)⁺: 341.1096, found: 341.1098.

6-methyl-5-(3-methylbenzoyl)-4-(p-tolyl)pyrimidin-2(1H)-one (4o):

White solid (52.5 mg, 55%). mp. 71.6-73.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.92 (bs, 1H), 7.52-7.42 (m, 4H), 7.30-7.25 (m, 1H), 7.24-7.17 (m, 1H), 7.04 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H), 2.30 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.8, 158.9, 141.7, 138.6, 137.2, 134.7, 129.8, 129.2, 128.9, 128.6, 126.7, 117.1, 21.4, 21.2. HRMS (ESI) calcd. for C₂₀H₁₉N₂O₂ (M+H)⁺: 319.1441, found: 319.1442.

5-(3-methoxybenzoyl)-6-methyl-4-(p-tolyl)pyrimidin-2(1H)-one (4p):

Yellow solid (45.1 mg, 45%). mp. 102.4-103.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.83 (bs, 1H), 7.47 (d, J = 8.1 Hz, 2H), 7.28-7.25 (m, 1H), 7.22-7.17 (m, 2H), 7.05 (d, J = 8.0 Hz, 2H), 7.02-6.98 (m, 1H), 3.79 (s, 3H), 2.44 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.4, 159.8, 158.8, 141.7, 138.6, 129.7, 129.3, 129.0, 122.4, 120.6, 117.0, 112.9, 55.5, 21.4. HRMS (ESI) calcd. for C₂₀H₁₉N₂O₃ (M+H)⁺: 335.1390, found: 335.1392.

5-(3-bromobenzoyl)-6-methyl-4-(p-tolyl)pyrimidin-2(1H)-one (4q):

Yellow solid (57.5 mg, 50%). mp. 102.5-103.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.87 (bs, 1H), 7.79-7.75 (m, 1H), 7.56-7.50 (m, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.19-7.12 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 2.49 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.1, 158.7, 142.0, 139.0, 136.4, 132.1, 130.2, 129.4, 128.9, 127.8, 122.9, 116.2, 21.4. HRMS (ESI) calcd. for C₁₉H₁₆BrN₂O₂ (M+H)⁺: 383.0390, found: 383.0388.

6-methyl-5-(2-methylbenzoyl)-4-(p-tolyl)pyrimidin-2(1H)-one (4r):

White solid (54.4 mg, 57%). mp. 192.4-195.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.81 (bs, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.28-7.21 (m, 2H), 7.09 (d, J = 7.5 Hz, 1H), 7.06-6.98 (m, 3H), 2.55-2.45 (m, 6H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.0, 158.9, 141.4, 139.9, 137.2, 132.4, 132.1, 130.6, 129.0, 128.6, 125.6, 118.5, 21.4, 21.3. HRMS (ESI) calcd. for C₂₀H₁₉N₂O₂ (M+H)⁺: 319.1441, found: 319.1443.

5-(2-chlorobenzoyl)-6-methyl-4-(p-tolyl)pyrimidin-2(1H)-one (4s):

White solid (65.0 mg, 64%). mp. 110.3-113.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.71 (bs, 1H), 7.36-7.28 (m, 3H), 7.21-7.11 (m, 2H), 7.09-7.03 (m, 1H), 7.03-6.97 (d, J = 8.0 Hz, 2H), 2.62 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 192.9, 158.1, 141.6, 137.4, 132.7, 132.6, 131.5, 130.7, 129.1, 128.8, 126.5, 118.0, 21.3. HRMS (ESI) calcd. for C₁₉H₁₆ClN₂O₂ (M+H)⁺: 339.0895, found: 339.0894.

6-ethyl-5-propionyl-4-(p-tolyl)pyrimidin-2(1H)-one (4t):

Yellow solid (26.8 mg, 33%). mp. 125.7-128.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.57 (bs,

1H), 7.52 (d, J = 7.8 Hz, 2H), 7.30-7.23 (m, 2H), 2.73 (q, J = 7.6 Hz, 2H), 2.41 (s, 3H), 2.16 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.5 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.0, 158.7, 142.2, 129.7, 128.8, 118.7, 38.2, 21.5, 8.5. HRMS (ESI) calcd. for C₁₆H₁₉N₂O₂ (M+H)⁺: 271.1441, found: 271.1443.

Methyl 6-methyl-2-oxo-4-(p-tolyl)-1,2-dihydropyrimidine-5-carboxylate (4v)⁴:

Yellow solid (51.1 mg, 66%). mp. 149.6-152.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.66 (bs, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 3.62 (s, 3H), 2.59 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 158.4, 141.6, 129.2, 128.1, 111.0, 52.4, 21.5. HRMS (ESI) calcd. for C₁₄H₁₅N₂O₃ (M+H)⁺: 259.1077, found: 259.1079.

Ethyl 6-methyl-2-oxo-4-(p-tolyl)-1,2-dihydropyrimidine-5-carboxylate (4w)^{5,6}:

Yellow solid (44.9 mg, 55%). mp. 125.4-128.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.73 (bs, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.10 (q, J = 7.1 Hz, 2H), 2.59 (s, 3H), 2.40 (s, 3H), 1.00 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 158.4, 141.5, 129.1, 128.2, 111.4, 61.6, 21.5, 13.6. HRMS (ESI) calcd. for C₁₅H₁₇N₂O₃ (M+H)⁺: 273.1234, found: 273.1233.

Benzyl 6-methyl-2-oxo-4-(p-tolyl)-1,2-dihydropyrimidine-5-carboxylate (4x):

White solid (76.2 mg, 76%). mp. 70.1-73.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.70 (bs, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.31-7.20 (m, 3H), 7.14 (d, J = 8.0 Hz, 2H), 6.96-6.90 (m, 2H), 5.04 (s, 2H), 2.57 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 157.3, 141.6, 134.3, 129.3, 128.5, 128.4, 128.4, 127.9, 110.8, 67.6, 21.4. HRMS (ESI) calcd. for C₂₀H₁₉N₂O₃ (M+H)⁺: 335.1390, found: 335.1392.

Methyl 6-ethyl-2-oxo-4-(p-tolyl)-1,2-dihydropyrimidine-5-carboxylate (4y):

Yellow solid (28.6 mg, 35%). mp. 141.3-144.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.58 (bs, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 3.62 (s, 3H), 2.86 (q, J = 7.6 Hz, 2H), 2.40 (s, 3H), 1.38 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.1, 158.6, 141.6, 129.3, 128.1, 110.6, 52.4, 21.5, 13.4. HRMS (ESI) calcd. for C₁₅H₁₇N₂O₃ (M+H)⁺: 273.1234, found: 273.1235.

Ethyl 2-oxo-6-phenyl-4-(p-tolyl)-1,2-dihydropyrimidine-5-carboxylate (4z)⁶:

Yellow solid (34.1 mg, 34%). mp, 98.3-100.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 13.15 (bs, 1H), 7.64-7.58 (m, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.50-7.41 (m, 3H), 7.30-7.24 (m, 2H), 3.93 (q, J = 7.1 Hz, 2H), 2.40 (s, 3H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 157.9, 141.8, 131.0, 129.5, 128.6, 128.1, 128.0, 111.8, 61.8, 21.5, 13.4. ¹H NMR (400 MHz, DMSO- d_6): δ 12.53 (bs, 1H), 7.59-7.40 (m, 7H), 7.32-7.28 (m, 2H), 3.85 (q, J = 7.1 Hz, 2H), 2.37 (s, 3H), 0.76 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 166.9, 141.0, 130.9, 129.5, 128.9, 128.4, 128.2, 61.6, 21.4, 13.6. HRMS (ESI) calcd. for C₂₀H₁₉N₂O₃ (M+H)⁺: 335.1390, found: 335.1391.

References:

[1] F. Berti, S. Bincoletto, I. Donati, G. Fontanive, M. Fregonese and F. Benedetti, *Org. Biomol. Chem.*, 2011, **9**, 1987.

[2] E. Laviron, J. Electroanal. Chem. Interfacial., 1974, 52, 355.

[3] L. Cui, L. Li, S. Ai, H. Yin, P. Ju and T. Liu, J. Solid State Electrochem., 2011, 15, 1253.

[4] K. Yamamoto, Y. G. Chen and F. G. Buono, Org. Lett., 2005, 7, 4673.

[5] X.-C. Wang, G.-J. Yang, Z.-J. Quan, P.-Y. Ji, J.-L. Liang and R.-G. Ren, *Synlett.*, 2010, **11**, 1657.

[6] Q. Liu, Y.-N. Li, H.-H. Zhang, B. Chen, C.-H. Tung and L.-Z. Wu, J. Org. Chem., 2011, 76, 1444.

5. ¹H, ¹³C and ¹⁹F NMR Spectra

14840-K240-1-H.ESP 14840-K240-1-H.ESP

Figure S5. ¹³C NMR spectrum of compound 4a

Figure S7. ¹³C NMR spectrum of compound 4b

Figure S9. ¹³C NMR spectrum of compound 4c

Figure S11. ¹³C NMR spectrum of compound 4d

Figure S15. ¹H NMR spectrum of compound 4f

Figure S16. ¹³C NMR spectrum of compound 4f

Figure S17. ¹H NMR spectrum of compound 4g

S19

Figure S21. ¹H NMR spectrum of compound 4j

331-K220-5-F.ESP

Figure S33. ¹⁹F NMR spectrum of compound 4n

Figure S35. ¹³C NMR spectrum of compound 40

Figure S39. ¹³C NMR spectrum of compound 4q

Figure S49. ¹³C NMR spectrum of compound 4w

Figure S51. ¹³C NMR spectrum of compound 4x

Figure S53. ¹³C NMR spectrum of compound 4y

Figure S55. ¹³C NMR spectrum of compound 4z in CDCl₃

Figure S57. ¹³C NMR spectrum of compound 4z in DMSO- d_6

6. Determination of Structure of 4a

The structure of **4a** was determined by the X-ray diffraction. Recrystallized from dichloromethane/n-hexane. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 1907956.

Table 1 Crystal data and structure refinement for 201806272.

Identification code	201806272
Empirical formula	$C_{19}H_{16}N_2O_2$
Formula weight	304.34
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	17.9538(2)
b/Å	13.0669(2)
c/Å	21.0038(3)
α/\circ	90
β/°	96.8682(13)
$\gamma/^{\circ}$	90
Volume/Å ³	4892.17(12)
Z	12

$\rho_{calc}g/cm^3$	1.240
μ/mm^{-1}	0.656
F(000)	1920.0
Crystal size/mm ³	$0.17 \times 0.14 \times 0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/	7.984 to 141.69
Index ranges	$-21 \le h \le 17, -15 \le k \le 14, -22 \le l \le 25$
Reflections collected	22248
Independent reflections	9225 [$R_{int} = 0.0229, R_{sigma} = 0.0268$]
Data/restraints/parameters	9225/0/628
Goodness-of-fit on F ²	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0511, wR_2 = 0.1457$
Final R indexes [all data]	$R_1 = 0.0729, wR_2 = 0.1660$
Largest diff. peak/hole / e Å-3	0.19/-0.17