Supporting Information

Synthesis of Dibenzocycloketones by Acyl Radical Cyclization from Aromatic Carboxylic Acids via Methylene Blue as Photocatalyst

Hongshuo Jiang,^{a,b} Guijie Mao,^a Hongfeng Wu,^{a,b} Qi An,^{a,b} Minghui Zuo,^{a,b} Weihao Guo,^{a,b} Chunzhao Xu,^{a,b} Zhizhong Sun^{*a,b} and Wenyi Chu ^{*a,b}

^aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080,

P. R. China

^bKey Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin 150080, P. R. China

Corresponding author. Tel.: +86-451-86609135; fax: +86-451-86609135 (E-mail: sunzz@hlju.edu.cn, wenyichu@hlju.edu.cn)

Table of contents

1. Materials and Measurements	S2
2. Preparation of ethyl 2-(2-bromoacetyl)benzoates. (General Procedure A)	S3
3. Preparation of 2-(2-phenoxyacetyl)benzoic acids. (General Procedure B)	S4
4. Preparation of 6H-dibenzo[b,e]oxocine-7,12-diones. (General Procedure C)	S4
5. General Procedure for Radical Trapping Experiment with TEMPO	S5
6. Spectra Data	S5

1. Materials and Measurements

All starting materials were purchased from TCI; the reagents were obtained from J&K Chemical Company and used without further purification unless specified. The acylation reactions were monitored by thin laye chromatography (TLC), and column chromatography were carried out on silica gel ($300 \sim 400$ mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker UltrashieldTM 400 spectrometer operating at 400 MHz and 100 MHz in DMSO or Chloroform. Chemical shifts were reported in ppm with tetramethylsilane (TMS) as internal standard. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, m = multiple. Coupling constants (J) are reported in Hertz (Hz). Melting points were recorded on a WRR melting point apparatus. Infrared spectra were recorded with the Perkin-Elmer Spectrum100 Fourier transform infrared spectroscopy. UV-visible spectra were measured by Shimadzu UV-2501PC UV-visible spectrophotometer. Elemental analyses of C, H, N were performed on a Elementar Vario MICRO cube. High resolution mass spectrum was accomplished on Agilent 1100 (VL) mass spectrometer.

2. Preparation of ethyl 2-(2-bromoacetyl)benzoates. (General Procedure A)

Reagents and conditions:

a. Et₃N, 80°C, 14 h;

b. H₂SO₄, CH₃CH₂OH, reflux, 3 h;

c. CuBr₂, ethyl acetate, reflux, 4 h.

a. 2-acetylbenzoic acids:

A stirred mixture of phthalicanhydrides and triethylamine (1.5 equiv) were heated to 80 °C. Ten equal portions of malonic acid (10×0.12 equiv; 1.2 equiv total) were charged over a period of 4 h, and the reaction mixture was maintained at 80°C for a further 10 h. Hydrochloricacid was charged and the reaction stirred for a further 30 min at 80 °C before being cooled to 25 °C, and the resulting slurry was filtered. The damp cake was washed with water and then dried under vacuum at 50 °C to give the title compound as light-brown crystals.

b. Ehyl 2-acetylbenzoates:

2-Acetyl benzoic acids were dissolved in ethanol (7.0 equiv for substrate), added H_2SO_4 (1.5 equiv), and stirred under reflux for 3 h. Then the mixture was added into water, neutralized with sodium bicarbonate to pH neutral, extracted, and dried. Distillation under reduced pressure gave colorless transparent liquids.

c. Ehyl 2-(2-bromoacetyl)benzoates:

Ethyl 2-acetylbenzoates were placed in a volumetric flask, ethyl acetate (4.0 equiv for substrate) was added thereto and stirred until completely dissolved, and copper bromide (1.6 equiv) powder was added. Then the temperature was raised to 80 ° C and maintained for 3 h under stirring. The solid of cuprous bromide was removed by suction under reduced pressure, washed with saturated brine, extracted with dichloromethane and dried over anhydrous sodium sulfate. The solvent was dried in a rotary evaporator to give crude solids.

3. Preparation of 2-(2-phenoxyacetyl)benzoic acids (Compound 1). (General Procedure B)

Phenols(1.1 equiv, 5.5mmol) dissolved in acetone (4 equiv for substrate) was added with ethyl 2-(2-bromoacetyl)benzoate (1.0 equiv, 5 mmol) and anhydrous K_2CO_3 (1.5 equiv, 7.5mmol). The resulting mixture was stirred for 4 h at room temperature. A 5% aqueous sodium hydroxide solution was added, and the reaction was carried out at 50 ° C for 10 h. 10% HCl was added until the pH was neutral, and ethyl acetate was

extracted. After filtration, the solvent was evaporated under reduced pressure. The residue was purified by the recrystallization method using alcohol.

4. Preparation of 6H-dibenzo[b,e]oxocine-7,12-diones (Compound 2). (General Procedure C)

Carboxylic acids 1 (0.2 mmol) and methylene blue (2 mol%) were added into a 10 mL vial equipped with a teflon coated magnetic stirring bar. 2.0 mL DMA, 2,4,6-collidine (1.0 equiv, 0.2 mmol) and PPh₃ (1.5 equiv, 0.3 mmol) were added. The vial was capped sealed with teflon tape and irradiated (at approximately 4 cm away from the light source) with a warm white LEDs under vigorous stirring at room temperature and monitored by TLC. After 24h the reaction was finished, the reaction crude was transferred into a 50 mL separation funnel using 15 mL of ethyl acetate. The mixture was washed with water (25 mL) and brine (25 mL x2). The organic phase was then separated and dried over anhydrous Na₂SO₄. The Na₂SO₄ was then filtered off and the solvent was removed under vacuum, and the residue was purified by silica gel chromatography to a \Box ord the product **2**.

5. General Procedure for Radical Trapping Experiment with TEMPO.

Carboxylic acids 1 (0.2 mmol), methylene blue (2 mol%), and TEMPO (2.0 equiv, 0.4 mmol) were added into a 10 mL vial equipped with a teflon coated magnetic stirring bar. 2.0 mL DMA, 2,4,6-collidine (1.0 equiv, 0.2 mmol) and PPh₃ (1.5 equiv, 0.3 mmol) were added. The vial was capped sealed with teflon tape and irradiated (at approximately 4 cm away from the light source) with a warm white LEDs under vigorous stirring at room temperature and monitored by TLC. After 24h the reaction was finished, the reaction crude was transferred into a 50 mL separation funnel using 15 mL of ethyl acetate. The mixture was washed with water (25 mL) and brine (25 mL x2). The organic phase was then separated and dried over anhydrous Na₂SO₄. The Na₂SO₄ was then filtered off and the solvent was removed under vacuum, and the residue was purified by silica gel chromatography to a ord the product V.

6. Spectra Data

Ethyl 2-(2-bromoacetyl)benzoate (Intermediate a).

Prepared according General Procedure. Light yellow solid. Mp. 60-62°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 7.6 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.57 – 7.52 (m, 1H), 7.39 (d, *J* = 7.4 Hz, 1H), 4.41 – 4.33 (m, 4H), 1.39 (t, *J* = 7.1 Hz, 3H). (Figure S1) ¹³C NMR (100 MHz, Chloroform-*d*) δ = 197.4, 166.0, 140.6, 132.7, 130.3, 130.1, 128.1, 127.6, 62.1, 35.2, 14.1. (Figure S2) HRMS: (EI) calcd

for C₁₁H₁₁BrO₃ [M+H]⁺: 270.9971. Found: 270.9976. Anal.calcd for: C₁₁H₁₁BrO₃: C 48.73, H 4.09; Found: C 48.72, H 4.07. FT-IR (KBr disc): v= 1709, 1304, 1287cm⁻¹. UV-vis spectra absorption peak: 276.5nm.

Ethyl 2-(2-bromoacetyl)-6-chlorobenzoate (Intermediate b).

Prepared according General Procedure A. White solid. Mp. 52-53°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 7.8 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 4.46 (q, J = 7.2 Hz, 2H),4.40 (s, 2H), 1.40 (t, J = 7.2 Hz, 3H). (Figure S3) ¹³C NMR (100 MHz, Chloroform-d) δ = 190.3, 166.3, 134.4, 134.2, 133.9, 133.2,

130.4, 127.5, 62.3, 31.0, 13.9. (Figure S4) HRMS: (EI) calcd for C₁₁H₁₀BrClO₃ [M+H]⁺: 304.9581. Found: 304.9587. Anal.calcd for: C₁₁H₁₀BrClO₃: C 43.24, H 3.30; Found: C 43.25, H 3.29. FT-IR (KBr disc): v= 1709, 1279, 1180, 1111cm⁻¹. UV-vis spectra absorption peak: 295.6nm.

Ethyl 2-(2-bromoacetyl)-5-chlorobenzoate (Intermediate c).

Prepared according General Procedure A. Light yellow solid. Mp. 74-81°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.96 (d, J =8.4 Hz, 1H), 7.50 (dd, J = 8.4, 2.0 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.31 (s, 2H), 1.39 (t, J = 7.1 Hz, 3H). (Figure S5) ¹³C NMR (100 MHz, Chloroform-*d*) δ = 196.1, 165.1, 142.3, 139.4, 131.5, 130.3, 127.9, 126.2, 62.3, 34.7, 14.1.

(Figure S6) HRMS: (EI) calcd for C₁₁H₁₀BrClO₃ [M+H]⁺: 304.9581. Found: 304.9574. Anal.calcd for: C₁₁H₁₀BrClO₃: C 43.24, H 3.30; Found: C 43.25, H 3.31. FT-IR (KBr disc): v = 1711, 1300, 1267cm⁻¹. UV-vis spectra absorption peak: 285.2nm.

Ethyl 2-(2-bromoacetyl)-4-chlorobenzoate (Intermediate d).

Prepared according General Procedure A. Light yellow solid. Mp. 93-96°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, J = 2.0 Hz, 1H), 7.59 (dd, J = 8.2, 2.0 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 4.30 (s, 2H), 1.40 (t, J = 7.2Hz, 3H). (Figure S7) ¹³C NMR (100 MHz, Chloroform-d) δ = 196.4, 164.9, 138.7, 136.6, 132.6, 130.1, 129.9, 129.2, 62.5,

34.6, 14.1. (Figure S8) HRMS: (EI) calcd for C₁₁H₁₀BrClO₃ [M+H]⁺: 304.9581. Found: 304.9575. Anal.calcd for: C₁₁H₁₀BrClO₃: C 43.24, H 3.30; Found: C 43.22, H 3.29. FT-IR (KBr disc): v = 1707, 1290, 1279cm⁻¹. UV-vis spectra absorption peak: 285.5nm.

Ethyl 2-(2-bromoacetyl)-5-methylbenzoate (Intermediate e).

Prepared according General Procedure A. Gray solid. Mp. 57-59°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.80 - 7.76 (m, 1H), 7.43 - 7.40 (q, J = 7.1 Hz, 1H), 4.37 (m, 2H), 4.33 (s, 2H), 2.44 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). (Figure **S9**) ¹³C NMR (100 MHz, Chloroform-*d*) δ = 197.8, 166.3, 143.8,

Intermediate e

141.0, 130.8, 130.5, 130.2, 127.7, 61.8, 35.4, 21.5, 14.1. (Figure **S10)** HRMS: (EI) calcd for $C_{12}H_{13}BrO_3$ [M+H]⁺: 285.0127. Found: 285.0122.

Anal.calcd for: C₁₂H₁₃BrO₃: C 50.55, H 4.60; Found: C 50.57, H 4.59. FT-IR (KBr disc): v= 1701, 1304, 1285cm⁻¹. UV-vis spectra absorption peak: 283.1nm.

2-(2-phenoxyacetyl)benzoic acid (1a).

Prepared according General Procedure B. White solid (1.19g, 93%). Mp. 89-91°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.35 (s, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 4.0 Hz, 2H), 7.67 (dt, J = 8.1, 4.2 Hz, 1H), 7.23 (t, J = 7.9 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 6.84 (d, J = 8.0 Hz, 2H), 4.52 (d, J = 10.3 Hz, 1H), 4.34 (d, J = 10.3 Hz, 1H). (Figure S11) ¹³C NMR (100 MHz,

DMSO- d_6) δ = 168.3, 158.3, 148.1, 135.1, 131.2, 129.9, 127.5, 125.0, 123.9, 121.6, 115.2, 105.8, 70.6. (Figure S12) HRMS: (EI) calcd for $C_{15}H_{12}O_4$ [M+H]⁺: 257.0815. Found: 257.0819. Anal.calcd for: $C_{15}H_{12}O_4$: C 70.31, H 4.72; Found: C 70.32, H 4.73. FT-IR (KBr disc): v= 3337, 1747, 1512, 1243, 1225cm⁻¹. UV-*vis* spectra absorption peak: 270.40nm.

2-(2-(p-tolyloxy)acetyl)benzoic acid (1b).

Prepared according General Procedure B. Light yellow solid (1.27g, 94%). Mp. 113-115°C. ¹H NMR (400 MHz, DMSOd₆) δ 8.35 (s, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 4.0 Hz, 2H), 7.66 (td, J = 7.9, 6.4, 4.2 Hz, 1H), 7.02 (d, J = 8.4 Hz, 2H), 6.73 (d, J = 8.3 Hz, 2H), 4.40 (d, J = 33.8 Hz, 2H), 2.19 (s, 3H). (Figure S13) ¹³C NMR (100 MHz, DMSO-d₆)

δ= 168.3, 156.3, 148.0, 135.0, 131.1, 130.2, 127.6, 125.0, 123.9, 115.5, 115.1, 105.9, 70.9, 20.5. (Figure S14) HRMS: (EI) calcd for C₁₆H₁₄O₄ [M+H]⁺: 271.0971. Found: 271.0976. Anal.calcd for: C₁₆H₁₄O₄: C 71.10, H 5.22; Found: C 71.12, H 5.21. FT-IR (KBr disc): v= 3333, 1751, 1514, 1246, 1227cm⁻¹. UV-*vis* spectra absorption peak: 274.50nm.

2-(2-(4-chlorophenoxy)acetyl)benzoic acid (1c).

Prepared according General Procedure B. Light yellow solid (1.35g, 93%). Mp. 123-125°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.37 (s, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 4.4 Hz, 2H), 7.70 – 7.65 (m, 1H), 7.27 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 4.46 (d, J = 36.5 Hz, 2H). (Figure S15) ¹³C NMR (100 MHz, DMSO- d_6) δ = 168.2,

157.2, 148.0, 135.0, 131.2, 129.7, 127.4, 125.4, 124.0, 121.5, 117.1, 105.7, 71.0. (Figure S16) HRMS: (EI) calcd for $C_{15}H_{11}ClO_4$ [M+H]⁺: 291.0425. Found: 291.0430. Anal.calcd for: $C_{15}H_{11}ClO_4$: C 61.98, H 3.81; Found: C 61.96, H 3.83. FT-IR (KBr disc): v= 3356, 1751, 1493, 1250, 1227cm⁻¹. UV-vis spectra absorption peak: 274.10nm.

2-(2-(4-fluorophenoxy)acetyl)benzoic acid (1d).

Prepared according General Procedure B. White solid (1.30g, 95%). Mp. 152-154°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.36 (s, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.79 (s, 2H), 7.67 (dt, J = 8.0, 4.2 Hz, 1H), 7.06 (t, J = 8.8 Hz, 2H), 6.92 – 6.82 (m, 2H), 4.43 (d, J = 62.5 Hz, 2H). (Figure S17) ¹³C NMR (100 MHz, DMSO- d_6) δ = 168.2, 1587.3 (d, J = 230

Hz), 154.7 (d, J = 3 Hz), 148.0, 135.1, 131.2, 127.5, 125.0, 123.9, 116.7, 116.6, 116.4,

116.1, 105.7, 71.3. (Figure S18) HRMS: (EI) calcd for $C_{15}H_{11}FO_4$ [M+H]⁺: 275.0720. Found: 275.0725. Anal.calcd for: $C_{15}H_{11}FO_4$: C 65.69, H 4.04; Found: C 65.67, H 4.06. FT-IR (KBr disc): v= 3345, 1750, 1508, 1252, 1231cm⁻¹. UV-*vis* spectra absorption peak: 274.20nm.

2-(2-([1,1'-biphenyl]-4-yloxy)acetyl)benzoic acid (1e).

Prepared according General Procedure B. Light yellow solid (1.53g, 92%). Mp. 188-189°C.¹H NMR (400 MHz, DMSO- d_6) δ 8.38 (s, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 3.5 Hz, 2H), 7.68 (dt, J = 7.8, 4.1 Hz, 1H), 7.56 (dd, J = 14.7, 8.1 Hz, 4H), 7.41 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.1 Hz, 1H), 6.95 (d, J = 8.5 Hz, 2H), 4.52 (s, 2H). (Figure S19) ¹³C NMR (100 MHz,

DMSO- d_6) δ = 168.3, 157.9, 148.1, 140.1, 135.8, 134.7, 133.7, 131.6, 131.2, 129.5, 129.3, 128.3, 128.2, 127.3, 126.7, 115.7, 70.8. (Figure S20) HRMS: (EI) calcd for C₂₁H₁₆O₄ [M+H]⁺: 333.1128. Found: 333.1134. Anal.calcd for: C₂₁H₁₆O₄: C 75.89, H 4.85; Found: C 75.87, H 4.86.FT-IR (KBr disc): v= 3337, 1741, 1489, 1287, 1245cm⁻¹. UV-*vis* spectra absorption peak: 260.00nm.

2-(2-(m-tolyloxy)acetyl)benzoic acid (1k).

Prepared according General Procedure B. Gray solid (1.26g, 93%). Mp. 125-127°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.35 (s, 1H), 7.87 (d, J = 7.4 Hz, 1H), 7.79 (s, 2H), 7.68 (d, J = 7.5 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 6.73 (d, J = 7.3 Hz, 1H), 6.65 (s, 2H), 4.41 (d, J = 54.5 Hz, 2H), 2.22 (s, 3H). (Figure S21) ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 168.3$,

158.3, 148.1, 139.5, 135.0, 131.1, 129.6, 127.4, 125.0, 123.9, 122.4, 115.9, 112.0, 105.9, 70.5, 21.4. (Figure S22) HRMS: (EI) calcd for $C_{16}H_{14}O_4$ [M+H]⁺: 271.0971. Found: 271.0975. Anal.calcd for: $C_{16}H_{14}O_4$: C 71.10, H 5.22; Found: C 71.12, H 5.24. FT-IR (KBr disc): v= 3360, 1736, 1491, 1294, 1261cm⁻¹. UV-*vis* spectra absorption peak: 272.10nm.

2-(2-(3-chlorophenoxy)acetyl)benzoic acid (11).

Prepared according General Procedure B. Light yellow solid (1.38g, 95%). Mp. 116-118°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.37 (s, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 4.7 Hz, 2H), 7.67 (ddd, J = 8.1, 5.5, 3.0 Hz, 1H), 7.25 (t, J = 8.3 Hz, 1H), 7.03 – 6.94 (m, 2H), 6.88 – 6.81 (m, 1H), 4.52 (s, 2H). (Figure S23) ¹³C NMR (100 MHz,

DMSO- d_6) δ = 168.2, 159.2, 147.6, 139.2, 134.1, 131.3, 129.7, 125.2, 123.5, 121.6, 115.4, 114.3, 112.0, 105.3, 71.0. (Figure S24) HRMS: (EI) calcd for C₁₅H₁₁ClO₄ [M+H]⁺: 291.0425. Found: 291.0420. Anal.calcd for: C₁₅H₁₁ClO₄: C 61.98, H 3.81; Found: C 61.99, H 3.83. FT-IR (KBr disc): v= 3293, 1742, 1595, 1290, 1236, 1202cm⁻¹. UV-*vis* spectra absorption peak: 273.60nm.

2-(2-(3-bromophenoxy)acetyl)benzoic acid (1m).

Prepared according General Procedure B. White solid (1.61g, 96%). Mp. 105-106°C.¹H NMR (400 MHz, DMSO- d_6) δ 8.38 (s, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.80

(d, J = 3.4 Hz, 2H), 7.67 (dt, J = 8.0, 4.2 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 7.14 – 7.08 (m, 2H), 6.88 (d, J = 7.7 Hz, 1H), 4.57 (d, J = 7.9 Hz, 1H), 4.48 – 4.28 (m, 1H). (Figure S25) ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 168.2$, 159.2, 147.9, 135.1, 131.6, 131.2, 127.4, 125.0, 124.6, 124.0,

122.4, 118.2, 114.7, 105.6, 70.8. (Figure S26) HRMS: (EI) calcd for $C_{15}H_{11}BrO_4$ [M+H]⁺: 334.9920. Found: 334.9925. Anal.calcd for: $C_{15}H_{11}BrO_4$: C 53.76, H 3.31; Found: C 53.78, H 3.33. FT-IR (KBr disc): v= 3298, 1740, 1290, 1234, 1202cm⁻¹. UV-*vis* spectra absorption peak: 274.00nm.

2-(2-(o-tolyloxy)acetyl)benzoic acid (1n).

Prepared according General Procedure B. Light yellow solid (1.27g, 94%). Mp. 134-136°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.45 (s, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.84 – 7.73 (m, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.11 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 7.2 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H), 4.44 (s, 2H), 1.70 (s, 3H). (Figure S27) ¹³C NMR (100 MHz,

DMSO- d_6) δ = 168.3, 156.1, 148.1, 135.0, 131.1, 130.8, 127.4, 126.0, 124.8, 123.6, 121.3, 112.1, 106.2, 100.0, 70.4, 15.6. (Figure S28) HRMS: (EI) calcd for C₁₆H₁₄O₄ [M+H]⁺: 271.0971. Found: 271.0966. Anal.calcd for: C₁₆H₁₄O₄: C 71.10, H 5.22; Found: C 71.12, H 5.25. FT-IR (KBr disc): v= 3462, 1736, 1296, 1256, 1125cm⁻¹. UV-*vis* spectra absorption peak: 261.60nm.

2-(2-(2-methoxyphenoxy)acetyl)benzoic acid (10).

Prepared according General Procedure B. White solid (1.32g, 92%). Mp. 148-149°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.28 (s, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.78 (d, J = 5.8 Hz, 2H), 7.66 (dd, J = 9.5, 3.5 Hz, 1H), 6.88 (t, J = 6.0 Hz, 3H), 6.81 (dt, J = 7.9, 3.9 Hz, 1H), 4.52 (d, J = 10.5 Hz, 1H), 4.30 (d, J = 10.5 Hz, 1H), 3.60 (s, 3H). (Figure S29) ¹³C NMR (100 MHz,

DMSO- d_6) δ = 168.3, 149.8, 148.2, 148.1, 134.8, 131.0, 127.7, 124.8, 124.0, 122.6, 121.3, 115.8, 113.5, 105.9, 72.2, 56.2. (Figure S30) HRMS: (EI) calcd for C₁₆H₁₄O₅ [M+H]⁺: 287.0920. Found: 287.0924. Anal.calcd for: C₁₆H₁₄O₅: C 67.13, H 4.93; Found: C 67.14, H 4.95. FT-IR (KBr disc): v= 3281, 1742, 1506, 1258, 1128, 1020cm⁻¹. UV-*vis* spectra absorption peak: 273.95nm.

2-(2-(2-chlorophenoxy)acetyl)benzoic acid (1p).

Prepared according General Procedure B. Light yellow solid (1.40g, 96%). Mp. 115-117°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.42 (s, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 7.9 Hz, 2H), 7.69 – 7.64 (m, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.16 (d, J = 8.1 Hz, 1H), 6.96 – 6.90 (m, 1H), 4.61 (d, J = 9.0 Hz, 1H), 4.42 (d, J = 8.9 Hz, 1H). (Figure S31) ¹³C

NMR (100 MHz, DMSO- d_6) δ = 168.2, 153.5, 147.9, 134.9, 131.1, 130.3, 128.7, 127.7, 124.9, 123.9, 122.5, 121.8, 114.7, 105.6, 71.1. (Figure S32) HRMS: (EI) calcd for C₁₅H₁₁ClO₄ [M+H]⁺: 291.0425. Found: 291.0429. Anal.calcd for: C₁₅H₁₁ClO₄: C 61.98, H 3.81; Found: C 61.97, H 3.83. FT-IR (KBr disc): v= 3273, 1740, 1487, 1294,

1254, 1076, 1014cm⁻¹. UV-vis spectra absorption peak: 273.50nm.

2-(2-(2,4-dimethylphenoxy)acetyl)benzoic acid (1q).

Prepared according General Procedure B. Gray solid (1.29g, 91%). Mp. 119-120°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.40 (s, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.78 (dt, J = 14.6, 7.2 Hz, 2H), 7.69 – 7.64 (m, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.84 – 6.76 (m, 2H), 4.41 (d, J = 10.0 Hz, 1H), 4.33 (d, J = 10.0 Hz, 1H), 2.15 (s, 3H), 1.65 (s, 3H). (Figure S33) ¹³C NMR

 $(100 \text{ MHz}, \text{DMSO-}d_6) \delta = 168.3, 154.1, 148.2, 135.0, 131.5, 131.0, 129.9, 127.8, 127.5, 125.8, 124.8, 123.6, 112.1, 106.2, 70.6, 20.5, 15.5. Figure S34) HRMS: (EI) calcd for C₁₇H₁₆O₄ [M+H]⁺: 285.1128. Found: 285.1123. Anal.calcd for: C₁₇H₁₆O₄: C 71.82, H 5.67; Found: C 71.84, H 5.68. FT-IR (KBr disc): v= 3254, 1748, 1481, 1277, 1287, 1242cm⁻¹. UV-vis spectra absorption peak: 273.95nm.$

2-(2-(2,4-dichlorophenoxy)acetyl)benzoic acid (1r).

Prepared according General Procedure B. Light yellow solid (1.46g, 90%). Mp. 121-122°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.43 (s, 1H), 7.86 (d, J = 7.4 Hz, 1H), 7.80 (s, 2H), 7.67 (dt, J = 8.0, 4.1 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.34 (dd, J = 8.9, 2.4 Hz, 1H), 7.21 (d, J = 8.9 Hz, 1H), 4.70 – 4.38 (m, 2H). (Figure S35)¹³C NMR (100 MHz, DMSO- d_6)

δ= 168.3, 158.6, 148.2, 135.4, 133.0, 130.1, 130.0, 129.7, 128.9, 128.5, 128.1, 126.2, 123.9, 115.4, 71.0. (Figure S36) HRMS: (EI) calcd for C₁₅H₁₀Cl₂O₄ [M+H]⁺: 325.0035. Found: 325.0039. Anal.calcd for: C₁₅H₁₀Cl₂O₄: C 55.41, H 3.10; Found: C 55.40, H 3.12. FT-IR (KBr disc): v= 3383, 1748, 1481, 1377, 1287, 1242, 1175cm⁻¹. UV-*vis* spectra absorption peak: 282.10nm.

2-(2-(4-fluoro-2-methylphenoxy)acetyl)benzoic acid (1s).

Prepared according General Procedure B. Light yellow solid (1.28g, 89%). Mp. 145-147°C. ¹H NMR (400 MHz, DMSO*d*₆) δ 8.36 (s, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.78 (q, *J* = 7.3 Hz, 2H), 7.70 – 7.63 (m, 1H), 6.98 (t, *J* = 9.1 Hz, 1H), 6.76 (dd, *J* = 5.8, 2.8 Hz, 1H), 6.68 (dt, *J* = 7.5, 3.1 Hz, 1H), 4.44 (s, 2H), 2.15 (s, 3H). (Figure S37) ¹³C NMR (100 MHz,

DMSO- d_6) δ = 168.3, 155.9 (d, J = 230 Hz), 154.3 (d, J = 3 Hz), 149.2, 134.9, 131.1, 128.2, 125.5 (d, J = 9 Hz), 125.0, 124.0, 118.1 (d, J = 9 Hz), 115.7 (d, J = 20 Hz), 113.6 (d, J = 8 Hz), 105.8, 71.2, 71.2, 14.7 (d, J = 4 Hz). (Figure S38) HRMS: (EI) calcd for C₁₆H₁₃FO₄ [M+H]⁺: 289.0877. Found: 289.0872. Anal.calcd for: C₁₆H₁₃FO₄: C 66.66, H 4.55; Found: C 66.64, H 4.57. FT-IR (KBr disc): v= 3300, 1742, 1506, 1238, 1198, 1038cm⁻¹. UV-vis spectra absorption peak: 275.05nm.

2-(2-(naphthalen-1-yloxy)acetyl)benzoic acid (1t).

Prepared according General Procedure B. Gray solid (1.41g, 92%). Mp. 161-162°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.62 (s, 1H), 7.97 (d, J = 7.5 Hz, 1H), 7.81 (dd, J = 11.8, 7.0 Hz, 3H), 7.70 (t, J = 7.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.37 (dt, J = 14.3, 7.6 Hz, 2H), 7.03 (d, J = 7.5 Hz, 1H), 4.69 (s, 2H). (Figure S39) ¹³C NMR (100

MHz, DMSO- d_6) δ = 168.4, 153.5, 143.1, 136.8, 135.0, 134.4, 131.6, 131.2, 130.4, 130.0, 127.9, 126.9, 126.5, 125.8, 125.0, 121.2, 121.1, 106.3, 70.7. (Figure S40) HRMS: (EI) calcd for C₁₉H₁₄O₄ [M+H]⁺: 307.0971. Found: 307.0966. Anal.calcd for: C 74.50, H 4.61; Found: C 74.52, H 4.60. FT-IR (KBr disc): v= 3505, 3057, 1753, 1508, 1402, 1290, 1271cm⁻¹. UV-vis spectra absorption peak: 282.15nm.

6-chloro-2-(2-phenoxyacetyl)benzoic acid (1u).

Prepared according General Procedure B. White solid (1.35g, 93%). Mp. 121-126°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.42 (s, 1H), 7.81 – 7.76 (m, 2H), 7.70 (dd, J = 6.5, 2.3 Hz, 1H), 7.27 – 7.21 (m, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.86 (d, J = 7.9 Hz, 2H), 4.54 (d, J = 10.3 Hz, 1H), 4.37 (d, J = 10.3 Hz, 1H). (Figure S41) ¹³C NMR (100 MHz, DMSO- d_6) δ = 165.2, 158.2,

150.7, 136.7, 132.2, 131.0, 129.9, 123.8, 122.9, 121.7, 115.3, 104.4, 70.3. (Figure S42) HRMS: (EI) calcd for C₁₅H₁₁ClO₄ [M+H]⁺: 291.0425. Found: 291.0429. Anal.calcd for

C₁₅H₁₁ClO₄: C 61.98, H 3.81; Found: C 61.97, H 3.82. FT-IR (KBr disc): v= 3356, 1746, 1499, 1260, 1239, 1123, 1040cm⁻¹. UV-*vis* spectra absorption peak: 276.30nm. **5-methyl-2-(2-phenoxyacetyl)benzoic acid (1v).**

Prepared according General Procedure B. Light yellow solid (1.27g, 95%). Mp. 136-137°C. ¹H NMR (400 MHz, DMSOd₆) δ 8.48 (s, 1H), 7.73 (s, 1H), 7.57 (d, J = 7.4 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.27 (t, J = 7.5 Hz, 2H),6.97 – 6.87 (m, 3H), 4.59 (s, 2H), 2.41(s, 3H). (Figure S43) ¹³C NMR (100 MHz, DMSO-d₆) δ =168.5, 158.4, 145.8, 141.2, 135.8,

131.9, 129.9, 123.7, 121.6, 118.0, 115.2, 105.6, 70.9, 21.2. (Figure S44) HRMS: (EI) calcd for $C_{16}H_{14}O_4$ [M+H]⁺: 271.0971. Found: 271.0965. Anal.calcd for: $C_{16}H_{14}O_4$: C 71.10, H 5.22; Found: C 71.11, H 5.23. FT-IR (KBr disc): v= 3358, 1739, 1503, 1238, 1202cm⁻¹. UV-*vis* spectra absorption peak: 271.30nm.

5-chloro-2-(2-phenoxyacetyl)benzoic acid (1w).

Prepared according General Procedure B. White solid (1.34g, 94%). Mp. 125-126°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.52 (s, 1H), 7.95 (s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.25 (t, J = 7.9 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 8.2 Hz, 2H), 4.58 (d, J = 10.2 Hz, 1H), 4.39 (d, J = 10.2 Hz, 1H). (Figure S45)

¹³C NMR (100 MHz, DMSO-*d*₆) δ=167.2, 158.2, 149.9, 140.1, 131.6, 129.9, 126.8, 126.4, 124.2, 121.7, 115.2, 105.4, 70.1. (Figure S46) HRMS: (EI) calcd for $C_{15}H_{11}ClO_4$ [M+H]⁺: 291.0425. Found: 291.0420. Anal.calcd for: $C_{15}H_{11}ClO_4$: C

61.98, H 3.81; Found: C 61.99, H 3.80. FT-IR (KBr disc): v= 3319, 1744, 1499, 1256, 1233, 1200cm⁻¹. UV-*vis* spectra absorption peak: 270.15nm.

4-chloro-2-(2-phenoxyacetyl)benzoic acid (1x).

Prepared according General Procedure B. Light yellow solid (1.37g, 92%). Mp. 136-137°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.49 (s, 1H), 7.92 (s, 1H), 7.84 (t, J = 7.7 Hz, 2H), 7.24 (t, J = 7.9 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 7.8 Hz, 2H), 4.46 (d, J = 47.0 Hz, 2H). (Figure S47) ¹³C NMR (100 MHz, DMSO- d_6) δ =167.1, 158.1, 149.8,

140.0, 131.5, 129.8, 126.7, 126.3, 124.1, 121.6, 115.1, 105.3, 70.0. (Figure S48) HRMS: (EI) calcd for $C_{15}H_{11}ClO_4$ [M+H]⁺: 291.0425. Found: 291.0429. Anal.calcd for: $C_{15}H_{11}ClO_4$: C 61.98, H 3.81; Found: C 61.99, H 3.80. FT-IR (KBr disc): v= 3320, 1746, 1502, 1248, 1198cm⁻¹. UV-*vis* spectra absorption peak: 270.05nm.

2-chloro-6-(2-(4-chlorophenoxy)acetyl)benzoic acid (1y).

Prepared according General Procedure B. White solid (1.54g, 94%). Mp. 133-134°C. ¹H NMR (400 MHz, DMSO d_6) δ 8.43 (s, 1H), 7.80 – 7.77 (m, 2H), 7.71 (dd, J = 6.5, 2.3 Hz, 1H), 7.28 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 4.53 (s, 2H). (Figure S49) ¹³C NMR (100 MHz, DMSO- d_6) δ =168.2, 158.6, 148.4, 136.1, 134.4, 133.3, 129.8, 129.6,

129.3, 129.1, 126.4, 116.3, 70.4. (Figure S50) HRMS: (EI) calcd for $C_{15}H_{10}Cl_2O_4$ [M+H]⁺: 325.0035. Found: 325.0039. Anal.calcd for: $C_{15}H_{10}Cl_2O_4$: C 55.41, H 3.10; Found: C 55.40, H 3.11. FT-IR (KBr disc): v= 3364, 1747, 1499, 1261, 1125, 1040cm⁻¹. UV-*vis* spectra absorption peak: 274.15nm.

Ethyl 2-(2-(pyridin-3-yloxy)acetyl)benzoate.

Prepared according General Procedure B. Light yellow oil (1.20g, 84%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.91 – 7.88 (m, 1H), 7.76 – 7.71 (m, 1H), 7.68 – 7.63 (m, 1H), 7.60 – 7.57 (m, 1H), 7.38 (td, J = 7.6, 1.2 Hz, 1H), 7.23 (dt, J = 15.1, 6.8 Hz, 2H), 7.06 (d, J = 7.1 Hz, 1H), 5.22 (s, 2H), 4.53 (q, J = 7.1

Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H). (Figure S51) ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 196.4$, 167.3, 155.2, 141.7, 137.5, 134.5, 132.8, 130.7, 129.6, 128.6, 128.4, 124.1, 122.0, 70.2, 61.3, 14.0. (Figure S52) HRMS: (EI) calcd for C₁₆H₁₅NO₄ [M+H]⁺: 286.1080. Found: 286.1086. Anal.calcd for: C₁₆H₁₅NO₄: C 67.36, H 5.30, N 4.91; Found: C 67.35, H 5.32, N 4.93.

Ethyl 2-(2-((1H-indol-4-yl)oxy)acetyl)benzoate.

Prepared according General Procedure B. Brown oil (1.39g, 86%). ¹H NMR (400 MHz, DMSO- d_6) δ 11.51 (s, 1H), 8.04 – 7.93 (m, 1H), 7.55 (dtd, J = 22.2, 7.5, 1.3 Hz, 2H), 7.43 – 7.35 (m, 1H), 7.05 – 7.00 (m, 1H), 6.78 – 6.72 (m, 2H), 6.40 – 6.35 (m, 1H), 6.25 (dd, J = 5.8, 2.5 Hz, 1H),

5.06 (s, 2H), 4.32 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). (Figure S53) ¹³C NMR (100 MHz, DMSO- d_6) δ = 196.5, 167.4, 152.3, 136.6, 134.6, 132.9, 130.8, 129.7, 128.7, 128.5, 123.2, 123.1, 118.7, 106.8, 105.1, 99.8, 70.9, 61.4, 14.1. (Figure S54) HRMS:

(EI) calcd for $C_{19}H_{17}NO_4$ [M+H]⁺: 324.1237. Found: 324.1234. Anal.calcd for: $C_{19}H_{17}NO_4$: C 70.58, H 5.30, N 4.33; Found: C 70.56, H 5.28, N 4.32.

Methyl 2-(phenoxymethyl)benzoate.

White solid. Mp. 54-55°C ¹H NMR (400 MHz, Chloroform-d) δ 8.05 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.31 (t, J = 7.9 Hz, 2H), 7.05 – 6.96 (m, 3H), 5.53 (s, 2H), 3.91 (s, 3H). (Figure S55) ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.75, 132.62, 130.74, 129.51,

127.69, 127.42, 127.24, 120.96, 114.92, 68.09, 52.09. (Figure S56) HRMS: (EI) calcd for $C_{15}H_{14}NO_3$ [M+H]⁺: 243.1022. Found: 243.1028. Anal.calcd for: $C_{15}H_{14}NO_3$: C 74.36, H 5.82; Found: C 74.35, H 5.80.

6H-dibenzo[b,e]oxocine-7,12-dione (2a).

Prepared according General Procedure C. Light yellow solid (36.15mg, 76%). Mp. 79-80°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.89 (d, J = 7.6 Hz, 1H), 7.73 – 7.65 (m, 2H), 7.57 (td, J = 7.4, 1.2 Hz, 1H), 7.45 (dd, J = 7.4, 1.9 Hz, 1H), 7.33 (td, J = 7.6, 1.9 Hz, 1H), 7.10 (dd, J = 7.6, 1.9 Hz, 1H), 7.01 (td, J = 7.6, 2.0 Hz, 1H). 4.64 (d, J = 10.1 Hz, 1H), 4.31 (d, J = 10.1 Hz, 1H). (Figure S57)

¹³C NMR (100 MHz, DMSO- d_6) δ = 173.5, 172.8, 157.1, 136.7, 135.5, 133.4, 133.3, 132.8, 130.7, 128.3, 127.9, 123.1, 115.1, 75.6. (Figure S58) HRMS: (EI) calcd for C₁₅H₁₀O₃ [M+H]⁺: 239.0709. Found: 239.0713. Anal.calcd for: C₁₅H₁₀O₃: C 75.62, H 4.23; Found: C 75.63, H 4.22. FT-IR (KBr disc): v= 3320, 1736, 1498, 1251, 1211 cm⁻¹. UV-*vis* spectra absorption peak: 334.40nm.

2-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2b).

Prepared according General Procedure C. Gray solid (41.79mg, 83%). Mp. 87-88°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.07 (d, J = 6.3 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.92 – 7.85 (m, 1H), 7.71 (t, J = 7.2 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.41 – 7.34 (m, 1H), 7.23 (d, J = 7.4 Hz, 1H), 4.61 (d, J = 10.1 Hz, 1H), 4.28 (d, J = 10.1 Hz, 1H), 2.28 (s, 3H). (Figure S59) ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 173.3$, 172.6, 154.8, 136.4, 135.2, 134.8, 133.2, 132.5, 132.1, 130.6,

129.3, 128.4, 128.1, 115.5, 75.4, 20.7. (Figure S60) HRMS: (EI) calcd for $C_{16}H_{12}O_3$ [M+H]⁺: 253.0865. Found: 253.0860. Anal.calcd for: $C_{16}H_{12}O_3$: C 76.18, H 4.79; Found: C 76.16, H 4.78. FT-IR (KBr disc): v= 3315, 1736, 1495, 1240, 1217cm⁻¹. UV-*vis* spectra absorption peak: 338.20nm.

2-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2c).

Prepared according General Procedure C. Light yellow solid (39.31mg, 72%). Mp. 92-94°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.87 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 4.4 Hz, 2H), 7.72 (d, J = 1.9 Hz, 1H), 7.54 (dd, J = 7.5, 1.9 Hz, 1H), 7.41 (dd, J = 7.6, 1.9 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 4.51 (dd, J = 72.7, 10.3 Hz, 2H). (Figure S61) ¹³C NMR (100 MHz, DMSO- d_6) δ = 173.6, 172.9, 156.1, 136.7, 135.5, 134.9, 133.5, 132.8, 129.8, 128.9, 128.7, 128.4,

128.3, 115.9, 75.7.(Figure S62) HRMS: (EI) calcd for $C_{15}H_9ClO_3$ [M+H]⁺: 273.0319. Found: 273.0325. Anal.calcd for: $C_{15}H_9ClO_3$: C 66.07, H 3.33; Found: C 66.08, H 3.32.FT-IR (KBr disc): v= 3318, 1724, 1476, 1293, 1224cm⁻¹. UV-vis spectra absorption peak: 337.80nm.

2-fluoro-6H-dibenzo[b,e]oxocine-7,12-dione (2d).

Prepared according General Procedure C. White solid (34.33mg, 67%). Mp. 124-126°C. ¹H NMR (400 MHz, DMSO- d_6) ¹H NMR (400 MHz, DMSO- d_6) δ 7.92 (d, J = 7.7 Hz, 1H), 7.83 (dd, J = 12.8, 6.2 Hz, 2H), 7.73 – 7.67 (m, 1H), 7.55 (dd, J = 7.5, 1.9 Hz, 1H), 7.27 (td, J = 9.2, 8.4, 1.9 Hz, 1H), 7.11 (dd, J = 7.4, 5.7 Hz, 1H), 4.67 (d, J = 10.7 Hz, 1H), 4.55 (d, J = 10.7 Hz, 1H). (Figure S63) ¹³C NMR (100 MHz, DMSO- d_6) δ = 173.6, 172.7 (d, J = 3 Hz), 155.5 (d, J =

255 Hz), 154.8 (d, J = 3 Hz), 136.5, 135.3, 133.3, 132.6, 129.3 (d, J = 7 Hz), 128.5, 128.2, 120.0 (d, J = 20 Hz), 117.4 (d, J = 11 Hz), 117.3, 75.5. (Figure S64) ¹⁹F NMR (376 MHz, DMSO- d_6) δ -35.25. (Figure S65) HRMS: (EI) calcd for C₁₅H₉FO₃ [M+H]⁺: 257.0615. Found: 257.0619. Anal.calcd for: C₁₅H₉FO₃: C 70.31, H 3.54; Found: C 70.29, H 3.52. FT-IR (KBr disc): v= 3321, 1729, 1488, 1247, 1220cm⁻¹. UV-*vis* spectra absorption peak: 337.60nm.

2-phenyl-6H-dibenzo[b,e]oxocine-7,12-dione (2e).

Prepared according General Procedure C. Light yellow solid (45.92mg, 73%). Mp. 169-170°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.98 (d, J = 7.5 Hz, 1H), 7.90 (d, J = 3.5 Hz, 2H),7.86 – 7.78 (m, 2H), 7.66 (ddd, J = 14.5, 7.5, 1.8 Hz, 3H), 7.43 (t, J = 7.4 Hz, 2H), 7.38 – 7.30 (m, 2H), 4.66 (d, J = 10.1 Hz, 1H), 4.48 (d, J = 10.1 Hz, 1H). (Figure S66) ¹³C NMR (100 MHz, DMSO- d_6) δ = 173.5, 172.8, 156.2, 139.8, 136.6, 135.5, 135.4, 133.4, 132.7, 130.9, 128.8, 128.6, 128.6, 128.3, 127.7, 127.4, 127.3, 114.1, 75.6. (Figure S67)

HRMS: (EI) calcd for $C_{21}H_{14}O_3$ [M+H]⁺: 315.1022. Found: 315.1027. Anal.calcd for: $C_{21}H_{14}O_3$: C 80.24, H 4.49; Found: C 80.21, H 4.48. FT-IR (KBr disc): v= 3324, 1724, 1474, 1257, 1234cm⁻¹. UV-*vis* spectra absorption peak: 321.50nm. Methyl 7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carboxylate (2f).

Prepared according General Procedure C. Light yellow solid (39.11mg, 66%). Mp. 112-113°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.89 (td, J = 7.3, 1.9 Hz, 1H), 7.76 (dd, J = 7.3, 1.9 Hz, 1H), 7.73 – 7.67 (m, 2H), 7.55 (dd, J = 7.4, 2.0 Hz, 1H), 7.28 (dd, J = 7.4, 1.9 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 4.89 (d, J = 10.7 Hz, 1H), 4.71 (d, J = 10.7 Hz, 1H), 3.47 (s, 3H). (Figure S68) ¹³C NMR (100 MHz, DMSO- d_6) δ = 173.5, 172.3, 166.0, 158.1, 136.6, 135.4, 133.3, 132.7, 131.6, 129.8,

129.7, 128.5, 128.2, 125.2, 114.6, 75.6, 52.1. (Figure S69) HRMS: (EI) calcd for $C_{17}H_{12}O_5$ [M+H]⁺: 297.0764. Found: 297.0768. Anal.calcd for: $C_{17}H_{12}O_5$: C 68.92, H 4.08; Found: C 68.93, H 4.06.

Ethyl 7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carboxylate (2g).

Prepared according General Procedure C. Light yellow solid (42.82mg, 69%). Mp. 101-102°C. ¹H NMR (400 MHz, DMSO d_6) δ 7.87 (td, J = 7.3, 1.9 Hz, 1H), 7.75 – 7.64 (m, 3H), 7.52 (dd, J = 7.5, 2.0 Hz, 1H), 7.26 (dd, J = 7.4, 1.9 Hz, 1H), 6.90 – 6.82 (m, 1H), 4.89 (d, J = 10.6 Hz, 1H), 4.69 (d, J = 10.6 Hz, 1H), 3.89 (q, J = 5.9 Hz, 2H), 0.88 (s, 3H). (Figure S70) ¹³C NMR (100 MHz, DMSO- d_6) δ = 173.5, 172.3, 165.4, 158.3, 136.7, 135.4, 133.4, 132.8, 131.4, 130.3, 130.1, 128.6, 128.3,

125.5, 114.8, 75.6, 61.0, 14.4. (Figure S71) HRMS: (EI) calcd for $C_{18}H_{14}O_5$ [M+H]⁺: 311.0920. Found: 311.0916. Anal.calcd for: $C_{18}H_{14}O_5$: C 69.67, H 4.55; Found: C 69.68, H 4.52.

N,N-dimethyl-7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carboxamide (2h).

² Prepared according General Procedure C. White solid (40.21mg, 65%). Mp. 134-135°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.88 (td, J = 7.3, 1.9 Hz, 1H), 7.68 (td, J = 7.6, 1.9 Hz, 1H), 7.57 – 7.50 (m, 3H), 7.30 (dd, J = 7.4, 1.9 Hz, 1H), 6.87 (d, J = 7.4 Hz, 1H), 4.89 (d, J = 10.1 Hz, 1H), 4.71 d, J = 10.1 Hz, 1H), 2.46 (s, 6H). (Figure S72) ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 174.3$, 173.5, 171.9, 157.8, 137.4, 136.2, 134.2, 133.5, 133.3, 129.3, 129.0, 128.6, 128.4, 128.4, 115.0,

76.4, 38.0. (Figure S73) HRMS: (EI) calcd for $C_{18}H_{15}NO_4$ [M+H]⁺: 310.1080. Found: 310.1083. Anal.calcd for: $C_{18}H_{15}NO_4$: C 69.89, H 4.89, N 4.53; Found: C 69.87, H 4.91, N 4.52.

7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carbonitrile (2i).

Prepared according General Procedure C. White solid (32.64mg, 62%). Mp. 86-87°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.90 (td, J = 7.3, 1.9 Hz, 1H), 7.74 – 7.64 (m, 2H), 7.54 (ddd, J = 7.4, 5.1, 1.9 Hz, 2H), 7.27 (dd, J = 7.6, 1.9 Hz, 1H), 7.03 (d, J = 7.4 Hz, 1H), 4.91 (d, J = 10.1 Hz, 1H), 4.73 (d, J = 10.1 Hz, 1H). (Figure S74) ¹³C NMR (100 MHz, DMSO- d_6) δ = 173.5, 171.8, 157.3, 137.6, 136.7, 135.5, 133.4, 132.8, 132.0, 131.8, 128.6, 128.3, 119.5, 116.2, 105.3, 75.6. (Figure S75) HRMS: (EI) calcd for C₁₆H₉NO₃

 $[M+H]^+$: 264.0661. Found: 264.0665. Anal.calcd for: $C_{16}H_9NO_3$: C 73.00, H 3.45, N 5.32; Found: C 72.98, H 3.46, N 5.30.

2-nitro-6H-dibenzo[b,e]oxocine-7,12-dione (2j).

Prepared according General Procedure C. Gray solid (33.42mg, 59%). Mp. 64-65°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.18 (d, J = 2.0 Hz, 1H), 8.11 (dd, J = 7.6, 1.9 Hz, 1H), 7.90 (td, J = 7.3, 1.9 Hz, 1H), 7.70 (td, J = 7.6, 1.9 Hz, 1H), 7.55 (dd, J = 7.4, 2.0 Hz, 1H), 7.29 (dd, J = 7.5, 2.0 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 4.91 (d, J = 10.7 Hz, 1H), 4.73 (d, J = 10.7 Hz, 1H). (Figure S76) ¹³C NMR (100 MHz, DMSO- d_6) δ = 173.6, 172.8, 159.2, 143.7, 136.7,

135.5, 133.5, 132.8, 130.8, 129.9, 128.7, 128.4, 126.3, 116.1, 75.7. (Figure S77) HRMS: (EI) calcd for C₁₅H₉NO₅ [M+H]⁺: 284.0560. Found: 284.0563. Anal.calcd for: C₁₅H₉NO₅: C 63.61, H 3.20, N 4.95; Found: C 63.60, H 3.22, N 4.97.

3-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2k).

Prepared according General Procedure C. White solid (37.86mg, 75%). Mp. 102-103 °C. ¹H NMR (400 MHz, DMSO- d_6) ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d,*J*= 7.4 Hz, 1H), 7.86 (s, 2H), 7.72 – 7.65 (m, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.03 (s, 1H), 6.91 – 6.84 (m, 1H), 4.53 (d, *J* = 10.1 Hz, 1H), 4.39 (d, *J* = 10.1 Hz, 1H), 2.30 (s, 3H). (Figure **S78**) ¹³C NMR (100 MHz, DMSO- d_6) δ = 173.5, 172.8, 160.0,

145.3, 136.6, 135.4, 133.4, 132.7, 131.1, 128.6, 128.3, 125.1, 121.8, 118.4, 75.6, 21.5. (Figure S79) HRMS: (EI) calcd for $C_{16}H_{12}O_3$ [M+H]⁺: 253.0865. Found: 253.0860. Anal.calcd for: $C_{16}H_{12}O_3$: C 76.18, H 4.79; Found: C 76.16, H 4.81. FT-IR (KBr disc): v= 3274, 1719, 1574, 1301, 1224, 1182cm⁻¹. UV-vis spectra absorption peak: 335.80nm.

3-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2l).

Prepared according General Procedure C. Gray solid (36.02mg, 66%). Mp. 98-99°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.96 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 4.7 Hz, 2H), 7.70 (td, J = 7.2, 2.6 Hz, 1H), 7.29 (d, J = 7.7 Hz, 2H), 7.14 (dd, J = 7.6, 1.9 Hz, 1H), 4.66 (d, J = 10.1 Hz, 1H), 4.37 (d, J = 10.1 Hz, 1H). (Figure **S80**) ¹³C NMR (100 MHz, DMSO- d_6) δ =173.3, 172.8 , 160.9,

138.9, 136.6, 135.4, 133.4, 132.7, 130.5, 128.6, 128.3, 126.2, 123.2, 116.8, 75.6. (Figure S81) HRMS: (EI) calcd for $C_{15}H_9ClO_3$ [M+H]⁺: 273.0319. Found: 273.0313. Anal.calcd for: $C_{15}H_9ClO_3$: C 66.07, H 3.33; Found: C 66.06, H 3.34. FT-IR (KBr disc): v= 3277, 1724, 1575, 1275, 1223, 1183cm⁻¹. UV-vis spectra absorption peak: 337.85nm.

3-bromo-6H-dibenzo[b,e]oxocine-7,12-dione (2m).

Prepared according General Procedure C. Light yellow solid (39.91mg, 63%). Mp. 91-93°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 3.4 Hz, 2H), 7.54 (td, J = 7.6, 2.1 Hz, 2H), 7.38 (d, J = 2.0 Hz, 1H), 7.29 (dd, J = 7.6, 1.9 Hz, 1H), 4.62 (d, J = 10.1 Hz, 1H), 4.44 (d, J = 10.1 Hz, 1H). (Figure S82) ¹³C NMR (100 MHz, DMSO- d_6) δ =173.4, 172.6,

160.8, 136.5, 135.3, 133.3, 132.6, 131.2, 131.0, 128.5, 128.2, 123.8, 123.3, 118.3, 75.5. (Figure S83) HRMS: (EI) calcd for $C_{15}H_9BrO_3$ [M+H]⁺: 316.9814. Found: 316.9819. Anal.calcd for: $C_{15}H_9BrO_3$: C 56.81, H 2.86; Found: C 56.83, H 2.87. FT-IR (KBr disc): v= 3281, 1716, 1300, 1247, 1185cm⁻¹. UV-vis spectra absorption peak: 338.20nm.

4-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2n).

Prepared according General Procedure C. White solid (31.32mg, 62%). Mp. 112-113°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.97 (d, J = 7.5 Hz, 1H), 7.92 – 7.83 (m, 2H), 7.76 (t, J = 7.4 Hz, 1H), 7.70 (dd, J = 7.4, 2.0 Hz, 1H), 7.43 – 7.34 (m, 1H), 7.20 (t, J = 7.4 Hz, 1H), 4.58 (d, J = 10.1 Hz, 1H), 4.41 (d, J = 10.1 Hz, 1H), 1.79 (s,

3H). (Figure S84) ¹³C NMR (100 MHz, DMSO- d_6) δ =173.4, 172.7, 149.9, 136.5, 135.3, 135.3, 133.3, 132.6, 129.3, 128.5, 128.2, 127.2, 126.9, 125.4, 77.9, 15.1. (Figure S85) HRMS: (EI) calcd for C₁₆H₁₂O₃ [M+H]⁺: 253.0865. Found: 253.0869. Anal.calcd for: C₁₆H₁₂O₃: C 76.18, H 4.79; Found: C 76.17, H 4.82. FT-IR (KBr disc): v= 3441, 1719, 1296, 1256, 1125cm⁻¹. UV-*vis* spectra absorption peak: 324.80nm.

4-methoxy-6H-dibenzo[b,e]oxocine-7,12-dione (20).

Prepared according General Procedure C. White solid (32.22mg, 60%). Mp. 126-128°C. ¹H NMR (400 MHz, DMSOd₆) δ 7.91 (d, J = 7.6 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.83 – 7.77 (m, 1H), 7.69 (t, J = 7.4 Hz, 1H), 7.54 (dd, J = 7.3, 2.2 Hz, 1H), 7.27 – 7.17 (m, 2H). 4.70 (d, J = 10.9 Hz, 1H), 4.49 (d, J = 10.9 Hz, 1H), 3.65 (s, 3H). (Figure S86) ¹³C NMR (100 MHz,

DMSO- d_6) δ = 173.6, 172.9, 152.2, 150.3, 136.7, 135.5, 133.5, 133.3, 132.8, 128.7, 128.4, 123.3, 120.7, 116.1, 78.1, 56.3. (Figure S87) HRMS: (EI) calcd for C₁₆H₁₂O₄ [M+H]⁺: 269.0815. Found: 269.0810. Anal.calcd for: C₁₆H₁₂O₄: C 71.64, H 4.51; Found: C 71.66, H 4.50. FT-IR (KBr disc): v= 3265, 1739, 1481, 1248, 1117cm⁻¹. UV-*vis* spectra absorption peak: 338.10nm.

4-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2p).

Prepared according General Procedure C. Light yellow solid (30.05mg, 55%). Mp. 97-99°C. ¹H NMR (400 MHz, DMSO d_6) δ 7.93 (dd, J = 14.7, 7.6 Hz, 2H), 7.83 (t, J = 7.5 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.63 (dd, J = 7.4, 2.0 Hz, 1H), 7.56 (dd, J = 7.6, 1.9 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H). 4.75 (dd, J = 66.2, 10.5 Hz, 2H). (Figure S88) ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 173.4$,

172.7, 160.8, 138.8, 136.5, 135.3, 133.3, 132.6, 130.4, 128.4, 128.2, 126.1, 123.1, 116.7, 75.5. (Figure S89) HRMS: (EI) calcd for $C_{15}H_9ClO_3$ [M+H]⁺: 273.0319. Found: 273.0313. Anal.calcd for: $C_{15}H_9ClO_3$: C 66.07, H 3.33; Found: C 66.06, H 3.35. FT-IR (KBr disc): v= 3260, 1731, 1469, 1286, 1247cm⁻¹. UV-*vis* spectra absorption peak: 336.80nm.

2,4-dimethyl-6H-dibenzo[b,e]oxocine-7,12-dione (2q).

Prepared according General Procedure C. White solid (30.90mg, 58%). Mp. 99-101°C.¹H NMR (400 MHz, DMSO- d_6) 7.86 (d, J = 7.6 Hz, 1H), 7.78 (dt, J = 14.6, 7.2 Hz, 2H), 7.69 – 7.64 (m, 1H), 7.39 (dd, J = 7.5, 2.0 Hz, 1H), 7.23 (s, 1H), 7.08 – 7.02 (m, 1H), 4.51 (d, J = 10.1 Hz, 1H), 4.33 (d, J = 10.1 Hz, 1H), 2.14 (s, 3H), 1.65 (s, 3H). (Figure S90) ¹³C NMR (100 MHz, DMSO- d_6) δ =173.6, 172.9, 147.7, 136.7, 135.5, 133.5, 132.8, 132.3, 130.7

, 128.7 , 128.4 , 126.7 , 126.5 , 78.1 , 21.2 , 16.5 . **(Figure S91)** HRMS: (EI) calcd for $C_{17}H_{14}O_3$ [M+H]⁺: 267.1022. Found: 267.1026. Anal.calcd for: $C_{17}H_{14}O_3$: C 76.68, H 5.30; Found: C 76.69, H 5.31. FT-IR (KBr disc): v= 3238, 1739, 1472, 1257, 1222, 1209cm⁻¹. UV-*vis* spectra absorption peak: 336.90nm.

2,4-dichloro-6H-dibenzo[b,e]oxocine-7,12-dione (2r).

Prepared according General Procedure C. Light yellow solid (31.95mg, 52%). Mp. 94-96°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d, J = 7.4 Hz, 1H), 7.89 (s, 2H), 7.71 (d,

2-fluoro-4-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2s).

Prepared according General Procedure C. White solid (31.33mg, 58%). Mp. 121-122°C. ¹H NMR (400 MHz, DMSO- d_6) 7.96 (d, J = 7.6 Hz, 1H), 7.88 (q, J = 7.3 Hz, 2H), 7.64 (td, J = 7.8, 7.3, 1.8 Hz, 2H), 7.15 (d, J = 9.0 Hz, 1H), 4.60 (d, J = 10.1 Hz, 1H), 4.42 (d, J = 10.1 Hz, 1H), 2.25 (s, 3H). (Figure S94) ¹³C NMR (100 MHz, DMSO- d_6) δ =173.6, 172.1 (d, J = 3 Hz), 160.0 (d, J = 252 Hz), 147.7, 136.6, 135.4, 133.4, 132.7, 130.7 (d, J = 8 Hz), 128.6,

128.3, 127.4 (d, J = 7 Hz), 119.4 (d, J = 21 Hz), 115.7 (d, J = 20 Hz), 78.0, 16.4. (Figure **S95**) HRMS: (EI) calcd for C₁₆H₁₁FO₃ [M+H]⁺: 271.0771. Found: 271.0777. Anal.calcd for: C₁₆H₁₁FO₃: C 71.11, H 4.10; Found: C 71.12, H 4.11. FT-IR (KBr disc): v= 3287, 1733, 1487, 1224, 1185cm⁻¹. UV-vis spectra absorption peak: 335.10nm.

8H-benzo[e]naphtho[1,2-b]oxocine-9,14-dione (2t).

Prepared according General Procedure C. Light yellow solid (35.19mg, 61%). Mp. 132-134°C. ¹H NMR (400 MHz, DMSO d_6) δ 8.27 (d, J = 7.5 Hz, 1H), 8.13 (s, 2H), 8.09 (s, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.94 (d, J = 7.5 Hz, 1H), 7.83 – 7.76 (m, 2H), 7.67 (dtd, J = 20.9, 7.4, 1.4 Hz, 2H), 4.85 (d, J = 10.1 Hz, 1H), 4.67 (d, J = 10.1 Hz, 1H). (Figure S96) ¹³C NMR (100

MHz, DMSO- d_6) δ =172.5, 171.6, 158.8, 136.6, 135.4, 133.9, 133.4, 132.7, 129.0, 128.6, 128.3, 128.2, 128.0, 127.3, 126.7, 126.0, 126.0, 122.5, 78.4. (Figure S97) HRMS: (EI) calcd for C₁₉H₁₂O₃ [M+H]⁺: 289.0865. Found: 289.0869. Anal.calcd for: C₁₉H₁₂O₃: C 79.16, H 4.20; Found: C 79.17, H 4.22. FT-IR (KBr disc): v= 3408, 3024, 1737, 1489, 1308, 1257, 1236cm⁻¹. UV-*vis* spectra absorption peak: 346.30nm.

11-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2u).

Prepared according General Procedure C. Gray solid (33.25mg, 61%). Mp. 98-100°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.90 – 7.80 (m, 3H), 7.69 – 7.59 (m, 2H), 7.41 (dd, J = 7.5, 2.0 Hz, 1H), 7.35 (td, J = 7.4, 1.9 Hz, 1H), 4.62 (d, J = 10.1 Hz, 1H), 4.44 (d, J = 10.1 Hz, 1H). (Figure S98) ¹³C NMR (100 MHz, DMSO- d_6) δ = 175.4, 173.2, 157.1, 139.2, 136.1, 135.3, 133.7, 133.4, 130.8, 129.2, 128.5,

128.1, 123.2, 115.2, 75.7. (Figure S99) HRMS: (EI) calcd for $C_{15}H_9ClO_3$ [M+H]⁺: 273.0319. Found: 273.0325. Anal.calcd for: $C_{15}H_9ClO_3$: C 66.07, H 3.33; Found: C 66.09, H 3.32. FT-IR (KBr disc): v= 3337, 1735, 1487, 1245, 1226, 1111cm⁻¹. UV-*vis* spectra absorption peak: 342.15nm.

10-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2v).

Prepared according General Procedure C. White solid (36.82mg, 73%). Mp. 117-118°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.78 – 7.70 (m, 2H), 7.51 (dd, J = 9.5, 7.6 Hz, 2H), 7.42 – 7.35 (m, 1H), 7.31 (dd, J = 7.6, 1.9 Hz, 1H), 7.25 – 7.18 (m, 1H), 4.76 (d, J = 10.1 Hz, 1H), 4.58 (d, J = 10.1 Hz, 1H), 2.08 (s, 3H). (Figure S100) ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 173.9$, 173.1, 157.0,

143.2, 136.5, 134.4, 133.2, 130.6, 129.7, 129.1, 128.8, 127.8, 123.1, 115.0, 75.6, 21.3. (Figure S101) HRMS: (EI) calcd for $C_{16}H_{12}O_3$ [M+H]⁺: 253.0865. Found: 253.0869. Anal.calcd for: $C_{16}H_{12}O_3$: C 76.18, H 4.79; Found: C 76.19, H 4.80. FT-IR (KBr disc): v= 3339, 1730, 1487, 1201, 1189cm⁻¹. UV-vis spectra absorption peak: 335.10nm. 10-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2w).

О́ 2w Prepared according General Procedure C. Light yellow solid (35.44mg, 65%). Mp. 102-103°C. ¹H NMR (400 MHz, DMSO- d_{δ}) δ 7.75 (dd, J = 7.6, 1.8 Hz, 2H), 7.65 – 7.54 (m, 3H), 7.36 (dd, J = 7.5, 2.0 Hz, 1H), 7.25 (td, J = 7.4, 1.9 Hz, 1H), 4.65 (d, J = 10.1 Hz, 1H), 4.47 (d, J = 10.1 Hz, 1H). (Figure S102) ¹³C NMR (100 MHz, DMSO- d_{δ}) δ =173.4, 172.0, 157.1, 139.3,

136.5, 136.5, 133.3, 130.7, 130.0, 129.3, 129.0, 127.9, 123.2, 115.1, 75.7. (Figure **S103**) HRMS: (EI) calcd for $C_{15}H_9CIO_3$ [M+H]⁺: 273.0319. Found: 273.0312. Anal.calcd for: $C_{15}H_9CIO_3$: C 66.07, H 3.33; Found: C 66.05, H 3.31. FT-IR (KBr disc): v= 3295, 1732, 1478, 1228, 1215, 1197cm⁻¹. UV-*vis* spectra absorption peak: 333.60nm.

9-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2x).

Prepared according General Procedure C. White solid (34.85mg, 64%). Mp. 115-116°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.83 – 7.74 (m, 2H), 7.63 – 7.50 (m, 3H), 7.31 (dd, J = 7.6, 1.9 Hz, 1H), 7.20 (td, J = 7.6, 1.9 Hz, 1H), 4.61 (d, J = 10.1 Hz, 1H), 4.44 (d, J = 10.1 Hz, 1H). (Figure S104) ¹³C NMR (100 MHz, DMSO- d_6) δ =175.6, 173.8, 157.1, 137.1, 136.1, 133.6,

133.3, 133.3, 130.7, 129.7, 129.4, 127.9, 123.2, 115.1, 75.7. (Figure S105) HRMS: (EI) calcd for $C_{15}H_9ClO_3$ [M+H]⁺: 273.0319. Found: 273.0312. Anal.calcd for: $C_{15}H_9ClO_3$: C 66.07, H 3.33; Found: C 66.06, H 3.34. FT-IR (KBr disc): v= 3297, 1734, 1480, 1254, 1184cm⁻¹. UV-*vis* spectra absorption peak: 333.55nm.

2,11-dichloro-6H-dibenzo[b,e]oxocine-7,12-dione (2y).

Prepared according General Procedure C. Light yellow solid (35.03mg, 57%). Mp. 131-132°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.96 – 7.90 (m, 2H), 7.87 (dd, J = 7.4, 2.0 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.40 (d, J = 7.4 Hz, 1H), 4.67 (d, J = 10.1 Hz, 1H), 4.49 (d, J = 10.1 Hz, 1H). (Figure S106)¹³C NMR (100 MHz, DMSO- d_6) $\delta = 170.3$, 168.8, 156.1, 139.1, 136.0, 135.2, 134.9, 133.6, 129.7, 129.1, 128.8, 128.4, 128.3, 115.9, 75.6. (Figure S107) HRMS: (EI)

calcd for $C_{15}H_8Cl_2O_3$ [M+H]⁺: 306.9929. Found: 306.9937 Anal.calcd for: $C_{15}H_8Cl_2O_3$: C 58.66, H 2.63; Found: C58.65, H 2.64. FT-IR (KBr disc): v= 3324, 1734, 1483, 1235, 1083cm⁻¹. UV-*vis* spectra absorption peak: 338.65nm.

6H-benzo[5,6]oxocino[2,3-c]pyridine-7,12-dione (2z).

Prepared according General Procedure C. Light yellow solid (23.51mg, 49%). Mp. 92-93°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.53 - 7.34 (m, 6H), 7.30 (d, J = 7.7 Hz, 1H), 4.97 (d, J = 10.9 Hz, 1H), 4.61 (d, J = 10.9 Hz, 1H). (Figure S108) ¹³C NMR (100 MHz, DMSO- d_6) δ =175.3, 173.9, 150.5, 144.3, 143.7, 137.7, 136.7, 135.4, 133.4, 132.8, 128.6, 128.3, 121.6, 75.6. (Figure S109)

HRMS: (EI) calcd for C₁₄H₉NO₃ [M+H]⁺: 240.0661. Found: 240.0654 Anal.calcd for: C₁₄H₉NO₃: C 70.29, H 3.79, N 5.86; Found: C 70.27, H 3.80, N 5.85.

Benzo[5,6]oxocino[2,3-e]indole-8,13(3H,7H)-dione (2aa).

Prepared according General Procedure C. Light vellow solid (29.43mg, 53%). Mp. 163-166°C. ¹H NMR (400 MHz, DMSO d_6) δ 11.02 (s, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.76 – 7.71 (m, 1H), 7.67 (dq, J = 7.5, 4.9, 4.3 Hz, 2H), 7.71 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 7.4 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 6.62 (d, J =7.6 Hz, 1H), 5.15 (d, J = 10.7 Hz, 1H), 4.97 (d, J = 10.7 Hz,

1H). (Figure S110) ¹³C NMR (100 MHz, DMSO- d_6) δ =174.1, 171.9, 151.0, 137.1, 135.8, 134.9, 133.1, 132.5, 128.3, 128.0, 126.1, 123.2, 123.1, 121.5, 111.6, 100.3, 77.7. (Figure S111) HRMS: (EI) calcd for C₁₇H₁₁NO₃ [M+H]⁺: 287.0818. Found: 287.0822 Anal.calcd for: C₁₇H₁₁NO₃: C 73.64, H 4.00, N 5.05; Found: C 73.66, H 4.01, N 5.04. 10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-one (2ab).

Prepared according General Procedure C. Light yellow solid (33.77mg, 81%). Mp. 32-34 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91 (dd, J = 7.8, 1.2 Hz, 2H), 7.51 (td, J = 7.4, 1.3 Hz, 2H), 7.40 – 7.31 (m, 4H), 3.14 (s, 4H). (Figure S112) ¹³C NMR (100 MHz,

DMSO- d_6) δ = 195.1, 142.4, 138.5, 133.0, 130.4, 130.0, 127.0, 34.6. (Figure S113) HRMS: (EI) calcd for C₁₅H₁₂O [M+H]⁺: 209.0967. Found: 209.0974 Anal.calcd for: C₁₅H₁₂O: C 86.51, H 5.81; Found: C 86.50, H 5.82.

Dibenzo[b,e]oxepin-11(6H)-one (2ac).

Prepared according General Procedure C. Light yellow solid (32.34mg, 77%). Mp. 71-72°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 9.4 Hz, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.56 – 7.43 (m, 3H), 7.34 (d, J = 7.4 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 8.3 Hz, 1H), 5.17 (s, 2H). (Figure S114) ¹³C NMR (101 MHz,

Chloroform-d) & 161.3, 140.6, 135.7, 135.3, 132.7, 131.9, 129.5, 129.2, 127.8, 122.1, 120.7, 73.6. (Figure S115) HRMS: (EI) calcd for C₁₄H₁₀O₂ [M+H]⁺: 211.0760. Found: 211.0755 Anal.calcd for: C₁₄H₁₀O₂: C 79.98, H 4.79; Found: C 79.97, H 4.77. Anthracen-9(10H)-one (2ad).

2ad

Prepared according General Procedure C. Light yellow solid (33.48mg, 86%). Mp. 152-157°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.20 (d, J = 7.5 Hz, 2H), 7.70 (t, J = 6.8 Hz, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.52 (t, J = 7.1 Hz, 2H), 4.46 (s, 2H). (Figure S116) ¹³C NMR $(100 \text{ MHz}, \text{DMSO-}d_6) \delta = 183.8, 141.5, 133.4, 131.7, 129.5, 127.4,$ 127.1, 32.1. (Figure S117) HRMS: (EI) calcd for C₁₄H₁₀O [M+H]⁺:

195.0811. Found: 195.0804 Anal.calcd for: $C_{14}H_{10}O$: C 86.57, H 5.19; Found: C 86.58, H 5.21.

9H-xanthen-9-one (2ae).

Prepared according General Procedure C. Light yellow solid (29.49mg, 75%). Mp. 175-176 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.58 – 8.08 (m, 2H), 8.06 – 7.23 (m, 6H). (Figure S118) ¹³C NMR $(100 \text{ MHz}, \text{DMSO-}d_6) \delta = 176.4, 156.0, 136.0, 126.4, 124.8, 121.6,$ 118.7. (Figure S119) HRMS: (EI) calcd for $C_{13}H_8O_2$ [M+H]⁺: 197.0603. Found: 197.0598 Anal.calcd for: C₁₃H₈O₂: C 79.58, H

4.11; Found: C 79.61, H 4.12.

Acridin-9(10H)-one (2af).

Prepared according General Procedure C. Yellow solid (28.81mg, 74%). Mp. 354-355°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.74 (s, 1H), 8.27 (d, J = 7.2 Hz, 2H), 7.75 (ddd, J = 8.4, 7.0, 1.5 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 7.31 – 7.24 (m, 2H). (Figure S120) ¹³C NMR (100 MHz, DMSO- d_6) δ = 177.2, 141.4, 133.9, 126.5, 121.4, 121.0, 117.8. (Figure S121) HRMS: (EI) calcd for C₁₃H₉NO

[M+H]+: 196.0763. Found: 196.0769 Anal.calcd for: C13H9NO: C 79.98, H 4.65, N 7.17; Found: C 80.01, H 4.67, N 7.16.

9H-thioxanthen-9-one (2ag).

Prepared according General Procedure C. White solid (26.11mg, 62%). Mp. 215-216°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.54 – 8.41 (m, 2H), 7.82 (d, J = 22.4 Hz, 4H), 7.60 (s, 2H). (Figure S122) ¹³C NMR (100 MHz, DMSO- d_6) δ = 179.3, 137.0, 133.5, 129.5, 128.9, 127.3, 127.0. (Figure S123) HRMS: (EI) calcd for C₁₃H₈OS

[M+H]⁺: 213.0375. Found: 213.0370 Anal.calcd for: C₁₃H₈OS: C 73.56, H 3.80; Found: C73.55, H 3.81.

Doxepin Hydrochloride.

Yellow solid. Mp. 182-184°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.37 - 7.28 (m, 3H), 7.21 (d, J = 7.9 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.13 - 7.08 (m, 1H), 6.85 (t, J = 7.6 Hz, 1H), 6.72 (d, J = 8.1Hz, 1H), 5.89 (t, J = 7.3 Hz, 1H), 5.13 (d, J = 281.9 Hz, 2H), 3.21 – 2.98 (m, 2H), 2.69 (d, J = 17.7 Hz, 8H). (Figure S124) ¹³C NMR (101 MHz, Chloroform-d) δ 155.15, 143.42, 139.89, 134.16, 129.95, 129.65, 128.89, 128.56, 128.50, 127.30, 126.26, 123.97, 121.20,

119.35, 69.96, 56.86, 24.37. (Figure S125) 9-Mesityl-10-methylacridinium Perchlorate.

Yellow solid. Mp. 384-385°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.82 (d, J = 9.3 Hz, 2H), 8.42 (ddd, J = 9.1, 6.6, 1.7 Hz, 2H), 7.88 -7.76 (m, 4H), 7.15 (s, 2H), 5.10 (s, 3H), 2.48 (s, 3H), 1.73 (s, 6H). (Figure S126) ¹³C NMR (100 MHz, Chloroform-d) δ = 162.7, 141.6, 140.3, 139.4, 135.9, 129.4, 129.0, 128.9, 128.4, 126.0, 119.4, 100.0, 39.2, 21.3, 20.1. (Figure S127)

2,2,6,6-tetramethylpiperidin-1-yl 2-(2-phenoxyacetyl)benzoate (V).

Prepared according General Procedure for Radical Trapping Experiment with TEMPO. White solid. Mp. 78-79°C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 4.0 Hz, 2H), 7.75 (dt, J = 8.1, 4.2 Hz, 1H), 7.31 (t, J = 7.9 Hz, 2H), 7.00 (t, J = 7.3 Hz, 1H) , 6.91 (d, J = 8.0 Hz, 2H), 5.18 (s, 2H), 1.58 (q, J = 16.3 Hz, 5H), 1.40 (s, 1H), 1.21 (s, 6H), 1.03 (s, 6H). (Figure S128) ¹³C NMR (100 MHz, DMSO- d_6) δ =

195.8, 164.3, 158.0, 134.4, 133.0, 131.5, 129.8, 129.3, 128.7, 128.3, 121.4, 115.0, 72.3, 60.5, 39.5, 31.9, 31.2, 20.9, 16.9. (Figure S129) HRMS: (EI) calcd for $C_{24}H_{29}NO_4$ [M+H]⁺: 396.2176. Found: 396.2182. Anal.calcd for: $C_{24}H_{29}NO_4$: C 72.89, H 7.39, N 3.54; Found: C 72.88, H 7.38, N 3.57. FT-IR (KBr disc): v=3326, 1743, 1499, 1221, 1216cm⁻¹. UV-*vis* spectra absorption peak: 273.3nm.

Figure S1. ¹H NMR of ethyl 2-(2-bromoacetyl)benzoate (Intermediate a).

Figure S2. ¹³C NMR of ethyl 2-(2-bromoacetyl)benzoate (Intermediate a).

Figure S3. ¹H NMR of ethyl 2-(2-bromoacetyl)-6-chlorobenzoate (Intermediate b).

Figure S4. ¹³C NMR of ethyl 2-(2-bromoacetyl)-6-chlorobenzoate (Intermediate b).

Figure S5. ¹H NMR of ethyl 2-(2-bromoacetyl)-5-chlorobenzoate (Intermediate c).

Figure S6. ¹³C NMR of ethyl 2-(2-bromoacetyl)-5-chlorobenzoate (Intermediate c).

Figure S7. ¹H NMR of ethyl 2-(2-bromoacetyl)-4-chlorobenzoate (Intermediate d).

Figure S8. ¹³C NMR of ethyl 2-(2-bromoacetyl)-4-chlorobenzoate (Intermediate d).

 $^{\rm l}{\rm H}$ NMR (400 MHz, Chloroform-d) ö 7.91 (d, J = 8.0 Hz, 1H), 7.80 - 7.76 (m, 1H), 7.43 - 7.40 (q, J = 7.1 Hz, 1H), 4.37 (m, 2H), 4.33 (s, 2H), 2.44 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H).

Figure S9. ¹H NMR of ethyl 2-(2-bromoacetyl)-5-methylbenzoate (Intermediate e).

Figure S10. ¹³C NMR of ethyl 2-(2-bromoacetyl)-5-methylbenzoate (Intermediate e).

$\begin{array}{c} & 3.3\\ & 7.87\\ & 7.87\\ & 7.787\\ & 7.787\\ & 7.79\\ & 7.766\\ &$

 $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) õ 8.35 (s, 1H), 7.86 (d, J=7.6 Hz, 1H), 7.80 (d, J=4.0 Hz, 2H), 7.67 (dt, J=8.1,4.2 Hz, 1H), 7.23 (t, J=7.9 Hz, 2H), 6.92 (t, J=7.3 Hz, 1H), 6.84 (d, J=8.0 Hz, 2H), 4.52 (d, J=10.3 Hz, 1H), 4.34 (d, J=10.3 Hz, 1H).

Figure S11. ¹H NMR of 2-(2-phenoxyacetyl)benzoic acid (1a).

Figure S12. ¹³C NMR of 2-(2-phenoxyacetyl)benzoic acid (1a).

Figure S13. ¹H NMR of 2-(2-(p-tolyloxy)acetyl)benzoic acid (1b).

Figure S14. ¹³C NMR of 2-(2-(p-tolyloxy)acetyl)benzoic acid (1b).

 $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) ö 8.37 (s. 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 4.4 Hz, 2H), 7.70 – 7.65 (m, 1H), 7.27 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 4.46 (d, J = 36.5 Hz, 2H).

Figure S15. ¹H NMR of 2-(2-(4-chlorophenoxy)acetyl)benzoic acid (1c).

Figure S16. ¹³C NMR of 2-(2-(4-chlorophenoxy)acetyl)benzoic acid (1c).

¹H NMR (400 MHz, DMSO- d_6) 5 8.36 (s, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.79 (s, 2H), 7.67 (dt, J = 8.0, 4.2 Hz, 1H), 7.06 (t, J = 8.8 Hz, 2H), 6.92 – 6.82 (m, 2H), 4.43 (d, J = 62.5 Hz, 2H).

Figure S17. ¹H NMR of 2-(2-(4-fluorophenoxy)acetyl)benzoic acid (1d).

Figure S18. ¹³C NMR of 2-(2-(4-fluorophenoxy)acetyl)benzoic acid (1d).

Figure S19. ¹H NMR of 2-(2-([1,1'-biphenyl]-4-yloxy)acetyl)benzoic acid (1e).

Figure S20. ¹³C NMR of 2-(2-([1,1'-biphenyl]-4-yloxy)acetyl)benzoic acid (1e).

 $^1\mathrm{H}$ NMR (400 MHz, DMSO-dc) ö 8.35 (s, 1H), 7.87 (d, J = 7.4 Hz, 1H), 7.79 (s, 2H), 7.68 (d, J = 7.5 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 6.73 (d, J = 7.3 Hz, 1H), 6.65 (s, 2H), 4.41 (d, J = 54.5 Hz, 2H), 2.22 (s, 3H).

Figure S21. ¹H NMR of 2-(2-(m-tolyloxy)acetyl)benzoic acid (1k).

Figure S22. ¹³C NMR of 2-(2-(m-tolyloxy)acetyl)benzoic acid (1k).

 $^1\mathrm{H}$ NMR (400 MHz, DMSO- $d_6)$ 5 8.37 (s. 1H), 7.86 (d, J=7.6 Hz, 1H), 7.79 (d, J=4.7 Hz, 2H), 7.67 (ddd, J=8.1, 5.5, 3.0 Hz, 1H), 7.25 (t, J=8.3 Hz, 1H), 7.03 – 6.94 (m, 2H), 6.88 – 6.81 (m, 1H), 4.52 (s, 2H).

Figure S23. ¹H NMR of 2-(2-(3-chlorophenoxy)acetyl)benzoic acid (11).

Figure S24. ¹³C NMR of 2-(2-(3-chlorophenoxy)acetyl)benzoic acid (11).

¹H NMR (400 MHz, DMSO- d_6) 5 8.38 (s, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 3.4 Hz, 2H), 7.67 (dt, J = 8.0, 4.2 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 7.14 - 7.08 (m, 2H), 6.88 (d, J = 7.7 Hz, 1H), 4.57 (d, J = 7.9 Hz, 1H), 4.48 - 4.28 (m, 1H).

Figure S25. ¹H NMR of 2-(2-(3-bromophenoxy)acetyl)benzoic acid (1m).

Figure S26. ¹³C NMR of 2-(2-(3-bromophenoxy)acetyl)benzoic acid (1m).

Figure S27. ¹H NMR of 2-(2-(o-tolyloxy)acetyl)benzoic acid (1n).

Figure S28. ¹³C NMR of 2-(2-(o-tolyloxy)acetyl)benzoic acid (1n).

Figure S29. ¹H NMR of 2-(2-(2-methoxyphenoxy)acetyl)benzoic acid (10).

Figure S30. ¹³C NMR of 2-(2-(2-methoxyphenoxy)acetyl)benzoic acid (10).

 $^{\rm i}{\rm H}$ NMR (400 MHz, DMSO-d₆) δ 8.42 (s. 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 7.9 Hz, 2H), 7.69 - 7.64 (m, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.29 - 7.24 (m, 1H), 7.16 (d, J = 8.1 Hz, 1H), 6.96 - 6.90 (m, 1H), 4.61 (d, J = 9.0 Hz, 1H), 4.42 (d, J = 8.9 Hz, 1H).

Figure S31. ¹H NMR of 2-(2-(2-chlorophenoxy)acetyl)benzoic acid (1p).

Figure S32. ¹³C NMR of 2-(2-(2-chlorophenoxy)acetyl)benzoic acid (1p).

Figure S33. ¹H NMR of 2-(2-(2,4-dimethylphenoxy)acetyl)benzoic acid (1q).

Figure S34. ¹³C NMR of 2-(2-(2,4-dimethylphenoxy)acetyl)benzoic acid (1q).

Figure S35. ¹H NMR of 2-(2-(2,4-dichlorophenoxy)acetyl)benzoic acid (1r).

Figure S36. ¹³C NMR of 2-(2-(2,4-dichlorophenoxy)acetyl)benzoic acid (1r).

Figure S37. ¹H NMR of 2-(2-(4-fluoro-2-methylphenoxy)acetyl)benzoic acid (1s).

Figure S38. ¹³C NMR of 2-(2-(4-fluoro-2-methylphenoxy)acetyl)benzoic acid (1s).

Figure S40. ¹³C NMR of 2-(2-(naphthalen-1-yloxy)acetyl)benzoic acid (1t).

Figure S41. ¹H NMR of 2-chloro-6-(2-phenoxyacetyl)benzoic acid (1u).

Figure S42. ¹³C NMR of 2-chloro-6-(2-phenoxyacetyl)benzoic acid (1u).

Figure S43. ¹H NMR of 5-methyl-2-(2-phenoxyacetyl)benzoic acid (1v).

Figure S44. ¹³C NMR of 5-methyl-2-(2-phenoxyacetyl)benzoic acid (1v).

$\begin{array}{c} 8.52 \\ 7.95 \\ 7.73 \\ 7.77 \\ 7.77 \\ 7.77 \\ 7.77 \\ 7.72 \\ 7.72 \\ 6.91 \\ 6.86 \\ 6.86 \\ 6.86 \\ 6.88 \\ 6.88 \\ 6.88 \\ 6.84 \\ 6.$

 $^1\mathrm{H}$ NMR (400 MHz, DMSO-dc) ö 8.52 (s, 1H), 7.95 (s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.25 (t, J = 7.9 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 8.2 Hz, 2H), 4.58 (d, J = 10.2 Hz, 1H), 4.39 (d, J = 10.2 Hz, 1H).

Figure S45. ¹H NMR of 5-chloro-2-(2-phenoxyacetyl)benzoic acid (1w).

Figure S46. ¹³C NMR of 5-chloro-2-(2-phenoxyacetyl)benzoic acid (1w).

$\begin{array}{c} 8.49\\ 7.92\\ 7.92\\ 7.186\\ 7.786\\ 7.786\\ 7.786\\ 7.786\\ 7.786\\ 7.726\\ 7.726\\ 6.93\\ 6.93\\ 6.93\\ 6.93\\ 6.93\\ 6.84\\ 6.84\\ 6.84\\ 6.84\\ 6.84\\ 6.84\\ 6.84\\ 7.420\\ 7.4$

 $^1\mathrm{H}$ NMR (400 MHz, DMSO-d_6) δ 8.49 (s, 1H), 7.92 (s, 1H), 7.84 (t, J = 7.7 Hz, 2H), 7.24 (t, J = 7.9 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 7.8 Hz, 2H), 4.46 (d, J = 47.0 Hz, 2H).

Figure S47. ¹H NMR of 4-chloro-2-(2-phenoxyacetyl)benzoic acid (1x).

Figure S48. ¹³C NMR of 4-chloro-2-(2-phenoxyacetyl)benzoic acid (1x).

Figure S49. ¹H NMR of 2-chloro-6-(2-(4-chlorophenoxy)acetyl)benzoic acid (1y).

Figure S50. ¹³C NMR of 2-chloro-6-(2-(4-chlorophenoxy)acetyl)benzoic acid (1y).

110 100 f1 (ppm)

-1

Figure S52. ¹³C NMR of ethyl 2-(2-(pyridin-3-yloxy)acetyl)benzoate.

Figure S53. ¹H NMR of ethyl 2-(2-((1H-indol-4-yl)oxy)acetyl)benzoate.

Figure S54. ¹³C NMR of ethyl 2-(2-((1H-indol-4-yl)oxy)acetyl)benzoate.

Figure S56. ¹³C NMR of methyl 2-(phenoxymethyl)benzoate.

 $^1\mathrm{H}$ NMR (400 MHz, DMSO- $d_6)$ õ
 7.89 (d, J=7.6 Hz, 1H), 7.73 – 7.65 (m, 2H), 7.57 (td,
 J=7.4, 1.2 Hz, 1H), 7.45 (dd, J=7.4, 1.9 Hz, 1H), 7.33 (td,
 J=7.6, 1.9 Hz, 1H), 7.10 (dd,
 J=7.6, 1.9 Hz, 1H), 7.01 (td,
 J=7.6, 2.0 Hz, 1H), 4.64 (d,
 J=10.1 Hz, 1H), 4.31 (d,
 J=10.1 Hz, 1H).

Figure S57. ¹H NMR of 6H-dibenzo[b,e]oxocine-7,12-dione (2a).

Figure S58. ¹³C NMR of 6H-dibenzo[b,e]oxocine-7,12-dione (2a).

Figure S59. ¹H NMR of 2-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2b).

Figure S60. ¹³C NMR of 2-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2b).

Figure S61. ¹H NMR of 2-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2c).

Figure S62. ¹³C NMR of 2-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2c).

Figure S63. ¹H NMR of 2-fluoro-6H-dibenzo[b,e]oxocine-7,12-dione (2d).

Figure S64. ¹³C NMR of 2-fluoro-6H-dibenzo[b,e]oxocine-7,12-dione (2d).

Figure S66. ¹H NMR of 2-phenyl-6H-dibenzo[b,e]oxocine-7,12-dione (2e).

Figure S68. ¹H NMR of Methyl 7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carboxylate (2f).

Figure S70. ¹H NMR of Ethyl 7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carboxylate (2g).

Figure S71. ¹³C NMR of Ethyl 7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carboxylate (2g).

Figure S72. ¹H NMR of N,N-dimethyl-7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carboxamide (2h).

Figure S74. ¹H NMR of 7,12-dioxo-7,12-dihydro-6H-dibenzo[b,e]oxocine-2-carbonitrile (2i).

Figure S76. ¹H NMR of 2-nitro-6H-dibenzo[b,e]oxocine-7,12-dione (2j).

Figure S78. ¹H NMR of 3-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2k).

Figure S80. ¹H NMR of 3-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2I).

Figure S82. ¹H NMR of 3-bromo-6H-dibenzo[b,e]oxocine-7,12-dione (2m).

Figure S84. ¹H NMR of 4-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2n).

Figure S86. ¹H NMR of 4-methoxy-6H-dibenzo[b,e]oxocine-7,12-dione (20).

Figure S88. ¹H NMR of 4-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2p).

Figure S90. ¹H NMR of 2,4-dimethyl-6H-dibenzo[b,e]oxocine-7,12-dione (2q).

Figure S92. ¹H NMR of 2,4-dichloro-6H-dibenzo[b,e]oxocine-7,12-dione (2r).

Figure S94. ¹H NMR of 2-fluoro-4-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2s).

Figure S96. ¹H NMR of 8H-benzo[e]naphtho[1,2-b]oxocine-9,14-dione (2t).

Figure S98. ¹H NMR of 11-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2u).

Figure S100. ¹H NMR of 10-methyl-6H-dibenzo[b,e]oxocine-7,12-dione (2v).

Figure 102. ¹H NMR of 10-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2w).

Figure S103. ¹³C NMR of 10-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2w).

Figure S104. ¹H NMR of 9-chloro-6H-dibenzo[b,e]oxocine-7,12-dione (2x).

Figure S106. ¹H NMR of 2,11-dichloro-6H-dibenzo[b,e]oxocine-7,12-dione (2y).

Figure S107. ¹³C NMR of 2,11-dichloro-6H-dibenzo[b,e]oxocine-7,12-dione (2y).

Figure S108. ¹H NMR of 6H-benzo[5,6]oxocino[2,3-c]pyridine-7,12-dione (2z).

Figure S109. ¹³C NMR of 6H-benzo[5,6]oxocino[2,3-c]pyridine-7,12-dione (2z).

Figure S110. ¹H NMR of benzo[5,6]oxocino[2,3-e]indole-8,13(3H,7H)-dione (2aa).

Figure S111. ¹³C NMR of benzo[5,6]oxocino[2,3-e]indole-8,13(3H,7H)-dione (2aa).

Figure S112. ¹H NMR of 10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-one (2ab).

Figure S114. ¹H NMR of dibenzo[b,e]oxepin-11(6H)-one (2ac).

Figure S116. ¹H NMR of anthracen-9(10H)-one (2ad).

Figure S117. ¹³C NMR of anthracen-9(10H)-one (2ad).

Figure S122. ¹H NMR of 9H-thioxanthen-9-one (2ag).

Figure S124. ¹H NMR of Doxepin Hydrochloride.

Figure S126. ¹H NMR of 9-Mesityl-10-methylacridinium Perchlorate.

Figure S128. ¹H NMR of 2,2,6,6-tetramethylpiperidin-1-yl 2-(2-phenoxyacetyl)benzoate (v).

