Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Carbon Nanoonion-Ferrocene Conjugates as acceptors in organic photovoltaic devices

Diana M. Bobrowska,^a Halyna Zubyk,^a Elzbieta Regulska,^a Elkin Romero,^b Luis Echegoyen,^b and Marta E. Plonska-Brzezinska^c

^{*a*} Institute of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland.

^b University of Texas at El Paso, 500 W University Ave., Chemistry and Computer Science Bldg. #2.0304, El Paso, TX 79968-8807, USA

^c Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland, E-mail: *marta.plonska-brzezinska@umb.edu.pl. Phone: (+4885) 748 5683.

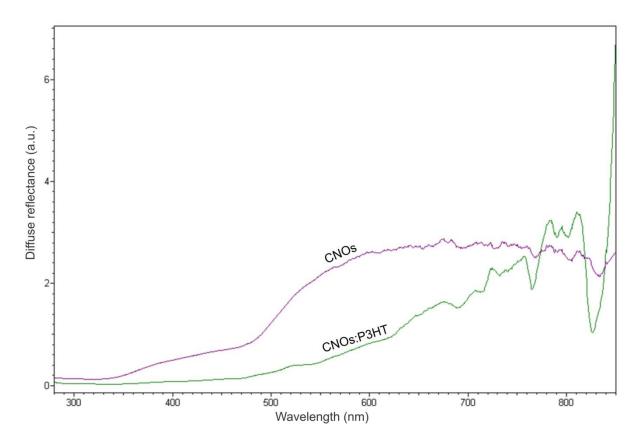
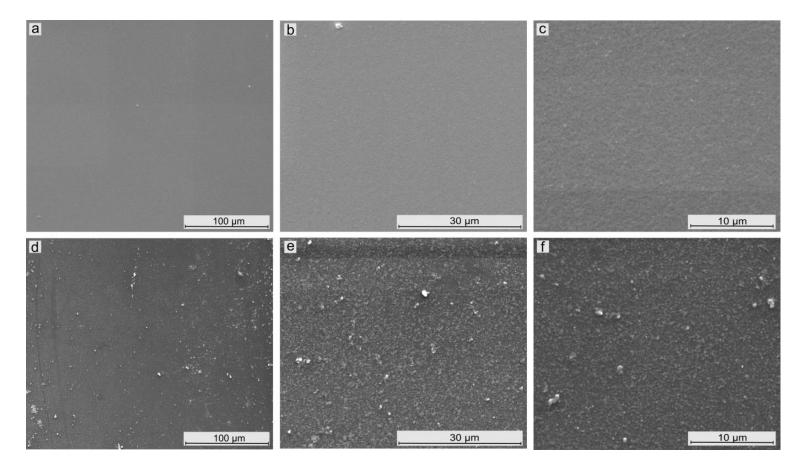
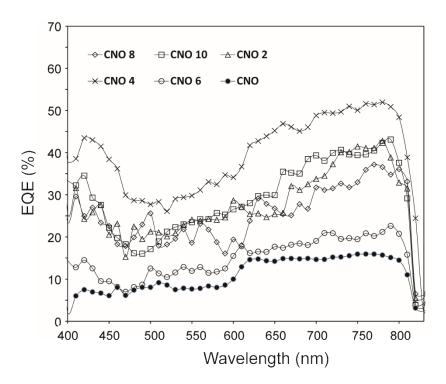


Fig. SI1. Diffuse reflectance spectra of the CNO and CNO:P3HT layers prepared by spin-coating method.

Sample	BET Surface Area S _{BET} (m ² /g)	t-plot micropore area (m ² /g)	t-Plot external surface area S _{ext} (m ² /g)	Cumulative surface area of pores ^a (m ² /g)	Cumulative surface area of pores ^b (m ² /g)	t-plot micropore volume (cm ³ /g)	Cumulative volume of pores ^a (cm ³ /g)	Cumulative volume of pores ^b (cm ³ /g)	Average pore width, (nm) ^c	Average pore width, (nm) ^d
CNOs	454	46	408	505	547	0.0195	1.660 ^[e]	1.686	13	12
CNO 4	201	42	159	177	195	0.0145	0.927 ^[h]	0.884	21	18
CNO 5	108	42	67	85	110	0.0163	$0.360^{[f]}$	0.375	17	14
CNO 6	214	99	116	183	200	0.0389	0.715 ^[g]	0.724	16	15
CNO 10	148	19	129	144	154	0.0062	0.721 ^[i]	0.684	20	18


Table SI1. The physicochemical parameters of pristine and functionalized CNOs.

^a - based BJH Adsorption method (pores width between 17, 000 Å and 3000,000 Å)


^b - based BJH Desorption method (pores width between 17, 000 Å and 3000,000 Å)

^c - based BJH Adsorption method (4v/A), ^d - based BJH Desorption method (4v/A)

Single point adsorption total pore volume of pores less than: (e) 1390 Å diameter at $p/p^o = 0.9862$; (f) 1330 Å diameter at $p/p^o = 0.9855$; (g) 1379 Å diameter at $p/p^o = 0.9861$; (h) 1431 Å diameter at $p/p^o = 0.9266$; (i) 1307 Å diameter at $p/p^o = 0.9853$.

Fig. SI2. SEM images of (a, b, c) ZnO layer on ITO-coated glass and (d, e, f) P3HT:CNO **4** layer spin-coated on the ZnO/ITO with different magnification: (a, d) 1000x, (b, e) 5000x and (c, f) 10000x. For better quality of SEM images, Au (3 nm thickness layer) was sputtered on the surface.

Fig. SI3. Photoconversion efficiency study - external quantum efficiency for devices based on the CNO derivatives (CNO **2**, CNO **4**, CNO **6**, CNO **8** and CNO **10**).