Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

SUPPLEMENTARY INFORMATION

A sensitive colorimetric detection of CN⁻ and AcO⁻ anions in semi-aqueous environment

through a coumarin-naphthalene conjugate azo dye

Sushil K. Dwivedi, Syed S. Razi and Arvind Misra*

Department of Chemistry, Institute of Science

Banaras Hindu University, Varanasi - 221 005 UP INDIA

Corresponding Author E-mail: amisra@bhu.ac.in; arvindmisra2003@yahoo.com.

Phone: +91-542-6702503; Fax: +91-0542-2368127, 2368175

Contents

Scheme S1: (i) Ethylacetoacetate/piperidine/EtOH/ Δ , (ii) Br₂/CHCl₃/EtOH/r.t., (iii) thiourea/EtOH/r.t., (iv) a. H₂SO₄/AcOH, b. NaNO₂/H₂O/0°C, c. alk. β -naphthol.

Figure S1: ¹H NMR spectrum of 2 in CDCl₃.

Figure S2: ¹H NMR spectrum of 3 in CDCl₃.

Figure S3: ¹H NMR spectrum of 4 in CDCl₃.

Figure S4: ¹H NMR spectrum of 5 in CDCl₃.

Figure S5: ¹H-NMR spectrum of probe 5 in DMSO- d_6 .

Figure S6: ¹³C NMR spectrum of 5 in CDCl₃.

Figure S7: FT-IR spectrum of probe 5.

Figure S8: ESI-MS spectrum of probe 5.

Figure S9: Stacked ¹H NMR spectra of probe **5** (2.0 x 10^{-2} M) upon addition of AcO⁻ (0 - 2.0 equiv) in CDCl₃.

Figure S10: ¹H NMR spectra of probe 5 upon addition 0.5 equiv. of CN⁻ in CDCl₃.

Figure S11: ¹H NMR spectra of probe 5 upon addition 1.0 equiv. of CN⁻ in CDCl₃.

Figure S12: ¹H NMR spectra of probe 5 upon addition 2.0 equiv. of CN⁻ in CDCl₃.

Figure S13: Stacked ¹³C NMR spectra of probe 5 and 5+CN⁻ in CDCl₃.

Figure S14: FT-IR spectrum of 5+CN⁻.

Figure S15: ESI-MS spectrum of 5+CN⁻.

Figure S16: ESI-MS spectrum of 5+AcO⁻.

Figure S17: Absorption spectra of probe 5 in solvent of different polarity.

Table-S1: Photophysical property of probe 5 in solvent of different polarity.

Figure S18: Absorption spectra of probe **5** (10 μ M) after interaction with F⁻, CN⁻, AcO⁻ in (a) acetonitrile, (b) acetonitrile:H₂O (1:1, v/v), (c) DMSO and (d) DMSO:H₂O (1:1, v/v).

Figure S19: Interaction of probe 5 with different metal ions in aqueous ethanol (1:1; v/v).

Figure S20: Interaction of probe 5 (10 μ M) with different anions in pure ethanol.

Figure S21: Bar Diagram of probe 5 (10 μ M) after interaction with different anions.

Figure S22: Benesi-Hildebrand plot of probe 5 (10 μ M) with (a) CN⁻ and (b) AcO⁻ ions.

Figure S23: Change in absorption spectra of probe 5 (10 μ M) upon addition of different concentration of (a) AcO⁻ (b) CN⁻.

Figure S24: Change in absorption spectra of probe 5 (10 μ M) at different pH in HEPES buffer (DMSO:H₂O; 9:1 v/v).

Figure S25: DFT method optimized minimum energy structure for azo and hydrazone form and HOMO-LUMO energy level for probe **5**.

Materials and Chemicals: All the reagent and solvents were purchased from Sigma-Aldrich Chemical Pvt. Ltd. Stored in a desiccator under vacuum containing self-indicating silica, and used without any further purification. Solvent were purified prior to use. UV-vis absorption spectra were recorded on a Perkin Elmer Lambda-35 UV-vis spectrophotometer using a quartz cuvette (path length = 1cm). Infrared (IR) spectra were recorded in potassium bromide (KBr) on Varian-3100 FT-IR spectrometer. ¹H NMR spectra were recorded (chemical shift in δ ppm) on a JEOL AL 300 and 500 FT-NMR (300 and 500MHz) spectrometer, using tetramethylsilane (TMS) as internal standard. All the spectroscopy experiments were carried out at room temperature. The stock solution of probe 5 (1 x 10⁻³) were prepared in EtOH and diluted to obtained 10 μ M in mixture of EtOH and H₂O (1:1, v/v) for absorption measurement. The stock solution of different anions (1 x 10⁻¹ M) was prepared by dissolving their inorganic salt in water. The anion interaction studies were performed by addition of 1 x 10⁻¹ M of different anions.

Estimation of Binding Constant: The absorption experimental data were utilized to calculate association constants by Benesi-Hildebrand method (B-H method) employing equations (1) for 1:1 stoichiometry.

$$1/(I - I_o) = 1/(I - I_f) + 1/K(I - I_f)[M]$$
(1)

Where K is the association constant, I is the absorbance of the free probe 5, I_0 is the observed absorbance of the 5+CN⁻ and 5+AcO⁻ in equation (1) complex, and I_f is the absorbance at saturation level.

Scheme S1: (i) Ethylacetoacetate/piperidine/EtOH/ Δ , (ii) Br₂/CHCl₃/EtOH/r.t., (iii) thiourea/EtOH/r.t., (iv) a. H₂SO₄/AcOH, b. NaNO₂/H₂O/0°C, c. alk. β -naphthol.

Figure S1: ¹H NMR spectrum of 2 in CDCl₃.

Figure S2: ¹H NMR spectrum of 3 in CDCl₃.

Figure S3: ¹H NMR spectrum of 4 in CDCl₃.

Figure S4: ¹H NMR spectrum of 5 in CDCl₃.

Figure S5: ¹H-NMR spectrum of probe 5 in DMSO-*d*₆.

Figure S6: ¹³C NMR spectrum of 5 in CDCl₃.

Figure S7: FT-IR spectrum of probe 5.

Figure S8: ESI-MS spectrum of probe 5.

Figure S9: Stacked ¹H NMR spectra of probe 5 (2.0 x 10^{-2} M) upon addition of AcO⁻ (0 - 2.0 equiv) in CDCl₃.

Figure S10: ¹H NMR spectra of probe **5** upon addition 0.5 equiv. of CN⁻ in CDCl₃.

Figure S11: ¹H NMR spectra of probe 5 upon addition 1.0 equiv. of CN⁻ in CDCl₃.

Figure S12: ¹H NMR spectra of probe 5 upon addition 2.0 equiv. of CN⁻ in CDCl₃.

Figure S13: Stacked ¹³C NMR spectra of probe 5 and $5+CN^{-}$ in CDCl₃.

Figure S14: FT-IR spectrum of 5+CN⁻.

Figure S15: ESI-MS spectrum of 5+CN⁻.

Figure S16: ESI-MS spectrum of 5+AcO⁻.

Figure S17: Absorption spectra of probe 5 in solvent of different polarity.

Properties	λ _{max}	ε (cm ⁻¹ M ⁻¹)
Hexane	283, 299, 346, 496	2.0148 x 10 ⁴ , 1.6219 x 10 ⁴ , 1.6983 x 10 ⁴ ,
		1.4167 x 10 ⁴
DMSO	284, 329, 390, 502	2.8858 x 10 ⁴ , 1.9112 x 10 ⁴ , 1.5106 x 10 ⁴ ,
		1.0403 x 10 ⁴
DCM	286, 302, 344, 498	1.9461 x 10 ⁴ , 1.7070 x 10 ⁴ , 1.5609 x 10 ⁴ ,
		1.3732 x 10 ⁴
H ₂ O	280, 309, 365, 481	1.6209 x 10 ⁴ , 1.3306 x 10 ⁴ , 1.1003 x 10 ⁴ ,
		0.7277 x 10 ⁴
Dioxane	286, 303, 348, 499	1.9479 x 10 ⁴ , 1.6896 x 10 ⁴ , 1.6722 x 10 ⁴ ,
		1.4419 x 10 ⁴
MeCN	287, 333, 389, 499	3.0822 x 10 ⁴ , 2.1164 x 10 ⁴ , 1.5870 x 10 ⁴ ,
		1.1193 x 10 ⁴
EtOH	284, 303, 348, 499	1.8554 x 10 ⁴ , 1.5935 x 10 ⁴ , 1.6983 x 10 ⁴ ,
		1.4322 x 10 ⁴
EtOH-H ₂ O	285, 304, 350, 498	1.5435 x 10 ⁴ , 1.5870 x 10 ⁴ , 1.5183 x 10 ⁴ ,
		1.3393 x 10 ⁴
DMSO-H ₂ O	287, 331, 386, 498	2.8006 x 10 ⁴ , 1.9287 x 10 ⁴ , 1.44193 x 10 ⁴ ,
		1.0229 x 10 ⁴
ACN-H ₂ O	287, 321, 387, 499	2.5693 x 10 ⁴ , 1.7661 x 10 ⁴ , 1.3393 x 10 ⁴ ,
		0.9464 x 10 ⁴

Table-S1: Photophysical property of probe 5 in solvent of different polarity.

Figure S18: Absorption spectra of probe 5 (10 μ M) after interaction with F⁻, CN⁻, AcO⁻ in (a) acetonitrile, (b) acetonitrile:H₂O (1:1, v/v), (c) DMSO and (d) DMSO:H₂O (1:1, v/v).

Figure S19: Interaction of probe 5 with different metal ions in aqueous ethanol (1:1; v/v).

Figure S20: Interaction of probe 5 (10 μ M) with different anions in pure ethanol.

Figure S21: Bar Diagram of probe 5 (10 μ M) after interaction with different anions.

Figure S22: Benesi-Hildebrand plot of probe 5 (10 μ M) with (a) CN⁻ and (b) AcO⁻ ions.

Figure S23: Change in absorption spectra of probe 5 (10 μ M) upon addition of different concentration of (a) AcO⁻ (b) CN⁻.

Figure S24: Change in absorption spectra of probe 5 (10 μ M) at different pH in HEPES buffer (DMSO:H₂O; 9:1 v/v).

Figure S25: DFT method optimized minimum energy structure for azo and hydrazone form and HOMO-LUMO energy level for probe **5**.