Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Fine Co Nanoparticles Encapsulated in N-Doped Porous Carbon for Efficient

Oxygen Reduction

Lei Liu, Yihe Zhang*, Xuelian Yu**

National Laboratory of Mineral Materials, Beijing Key Laboratory of Materials Utilization of

Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 10083, China.

Corresponding Authors E-mail addresses:

**Xuelian Yu: xlyu@cugb.edu.cn

*Yihe Zhang: zyh@cugb.edu.cn

Fig.S1. The TEM and HRTEM of Co@NPC(a,f), Co@NPC-APt(t=4h)(b,g), Co@NPC-APt(t=8h)(c,h),

Co@NPC-APt(t=12h)(d,i) and Co@NPC-APt(t=16h)(e,k)

Fig.S2. EDS of Co@NPC(a) and Co@NPC-APt(t=12h)(b)

Fig.S3. LSV curves of Co@NPC-APt(t=0,4h,8h,12h,16h) under 1600rpm.

Fig.S4. CVs of the Co@NPC (**a**) and Co@NPC-APt(t=12) (**b**) (Potential from 1.35 V to 1.40 V) measured in 0.1 M KOH at scan rates of 2-25 mV s⁻¹. (**c**) Plots of the ΔJ (ΔJ =Ja-Jc , Ja is the anodic current density and Jc is the cathodic current density) at 1.375 V vs. the scan rate to determine the double layer capacitance (C_{dl})

Fig.S5 The durability (**a**) and methanol-tolerance evaluation (**b**) of Co@NPC-APt(t=12) catalysts by the chronoamperometric responses.

Samples	E _{onset} (V vs. RHE)	E _{1/2} (V vs. RHE)	$ J_d (mA \cdot cm^{-2})$	Electrolyte	references
Co ₃ O ₄ /N-C/MWCNTs	0.89	~0.81	4.5	0.1 M KOH	S1
Co@C-800	0.92	0.82	4.9	0.1 M KOH	S2
Co@Pt-NC	0.99	0.87	5.9	0.1 M KOH	S3
Co@Co ₃ O ₄ -NC	0.91	0.74	4.5	0.1 M KOH	S4
LDHs@Co,Zn-ZIF	0.97	0.84	5.8	0.1 M KOH	S5
Co-NC@CoP-NC	0.89	0.78	4.8	0.1 M KOH	S6
N, Co-CNSs-800	0.96	0.83	4.7	0.1 M KOH	S7
Carbon-L	0.86	0.70	4.6	0.1 M KOH	S8
Co@NPC-AP	0.95	0.89	5.6	0.1 M KOH	This work

 Table 1. Comparison of electrocatalytic performance of Co@NPC-APt(t=12) with various catalysts reported in the literature.

Reference:

S1. X. Li, Y. Fang, X. Lin, M. Tian, X. An, Y. Fu, R. Li, J. Jin and J. Ma, J. Mater. Chem. A, 2015, 3, 17392-17402.

S2. G. C. Li, J. Li, Z. W. Zhou, C. L. Li, C. Cai, B. K. Guo, R. D. Priestley, L. Han and R. Liu, Dalton Trans., 2017,46, 16419-16425;

S3. L. Wang, Z. Tang, W. Yan, Q. Wang, H. Yang and S. Chen, J. Power Sources, 2017, 343, 458-466.

S4. A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, Angew. Chem. Int. Ed., 2016, 55, 4087-4091.

S5. Z. Li, M. Shao, L. Zhou, Q. Yang, C. Zhang, M. Wei, D. G. Evans and X. Duan, Nano Energy, 2016, 25, 100-109.

S6. X. Li, Q. Jiang, S. Dou, L. Deng, J. Huo, S. Wang, X. Li, Q. Jiang, S. Dou and L. Deng, J. Mater. Chem. A, 2016, 4, 15836-15840.

S7. Y. N. Hou, Z. Zhao, Z. Yu, Y. Tang, X. Wang and J. Qiu, Chem.Commun., 2017, 53, 7840-7843.

S8. P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun and D. Cao, Energy Environ. Sci., 2013, 7, 442-450;