Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

SUPPORTING PILs

Levulinate amidinium protic ionic liquids (PILs) as suitable media for the dissolution and levulination of cellulose

Stefano Becherini, ^[a] Andrea Mezzetta, ^[a] Cinzia Chiappe, ^[a] and Lorenzo Guazzelli, *^[a]

Supporting Information

Table of contents

¹ H- and ¹³ C-NMR spectra of Lev PILs	pages S2-S5
IR spectra of Lev PILs	pages S6-S7
Thermal gravimetric analysis (TGA) of Lev PILs	pages S8-S9
Images of dissolved MCC in Lev PILs at maximum wt%	page S10
Optical microscopy of dissolved MCC in Lev PILs at maximum wt%	pages S11- S12
IR spectra of pristine MCC and regenerated cellulose after dissolution in	Lev (P)ILs
	pages \$13-\$15
¹ H- and ¹³ C-NMR spectra of Levulinic Anhydride	pages \$16-\$17
IR spectra of cellulose after levulination reaction	pages S18-S33
¹ H-NMR of propionyl-levulinyl cellulose	pages S34-S49

 [a] Dr A. Mezzetta, Mr S. Becherini, Prof. C. Chiappe, Dr L. Guazzelli Department of Pharmacy University of Pisa Via Bonanno 6, Pisa (Italy)
*E-mail: lorenzo.guazzelli@unipi.it Fig S1. ¹H NMR of DBUHLev at 25 °C

Fig S2. ¹³C NMR of DBUHLev at 25 °C

Fig S3. ¹H NMR of DBNHLev at 25 °C

Fig S4. ¹³C NMR of DBNHLev at 25 °C

Fig S5. IR of DBUHLev at 25 °C

Fig S7. Thermal gravimetric analysis (TGA) of DBUHLev

Fig S8. Thermal gravimetric analysis (TGA) of DBNHLev

Fig S9. Pictures of dissolved MCC in DBUHLev: 80 °C, 12.5 wt% (A); 100 °C, 15 wt%(B)

Fig S10. Pictures of dissolved MCC in **DBNHLev**: 60 °C, 12 wt% (**A**); 80 °C, 16 wt% (**B**); 100 °C, 20 wt%(**C**)

Fig S15. IR of regenerated cellulose after dissolution in DBNHLev at 100 °C

Fig S16. ¹H-NMR of Levulinic Anhydride

Fig S17. ¹³C-NMR of Levulinic Anhydride at 25 °C

Fig S18. IR of cellulose levulinate from DBNHLev, 20 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S19. IR of cellulose levulinate from DBNHLev, 10 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S20. IR of cellulose levulinate from DBNHLev, 10 eq Lev₂O, 50°C, 0.5 ml DMSO

Fig S21. IR of cellulose levulinate from DBNHLev, 10 eq Lev₂O, 25°C, 0.5 ml DMSO

Fig S22. IR of cellulose levulinate from DBNHLev, 3 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S23. IR of cellulose levulinate from DBNHLev, 20 eq Lev₂O, 80°C, 0.5 ml γ - valerolactone

Fig S24. IR of cellulose levulinate from DBNHLev, 10 eq Lev₂O, 80°C, 0.5 ml γ - valerolactone

Fig S25. IR of cellulose levulinate from DBNHLev, 10 eq Lev₂O, 50°C, 0.5 ml γ - valerolactone

Fig S26. IR of cellulose levulinate from DBNHLev, 10 eq Lev₂O, 25°C, 0.5 ml γ - valerolactone

Fig S27. IR of cellulose levulinate from DBNHLev, 10eq Lev₂O, 80°C, 3.5gr DMSO

Fig S28. IR of cellulose levulinate from DBUHLev, 10 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S29. IR of cellulose levulinate from DBUHLev, 10 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S30. IR of cellulose levulinate from DBUHLev, 10 eq Lev₂O, 50°C, 0.5 ml DMSO

Fig S31. IR of cellulose levulinate from DBUHLev, 10 eq Lev₂O, 25°C, 0.5 ml DMSO

Fig S32. IR of cellulose levulinate from DBUHLev, 3 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S33. IR of cellulose levulinate from DBUHLev, 10eq Lev₂O, 80°C, 3.5gr DMSO

Fig S34. ¹H NMR of propionyl-levulinyl cellulose from **DBNHLev**, 10 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S35. ¹H NMR of propionyl-levulinyl cellulose from **DBNHLev**, 10 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S36. ¹H NMR of propionyl-levulinyl cellulose from **DBNHLev**, 10 eq Lev₂O, 50°C, 0.5 ml DMSO

Fig S45. ¹H NMR of propionyl-levulinyl cellulose from **DBUHLev**, 10 eq Lev₂O, 80°C, 0.5 ml DMSO

Fig S49. ¹H NMR of propionyl-levulinyl cellulose from DBUHLev, 10eq Lev₂O, 80°C, 3.5gr DMSO