Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Figure S2 ¹³C NMR spectrum of dihydroxyimino-malonic acid diamide.

Figure S4 ¹³C NMR spectrum of compound **1**.

Figure S6 ¹³C NMR spectrum of compound **2**.

Figure S8 13 C NMR spectrum of compound **3**.

Figure S10 13 C NMR spectrum of compound 4.

Figure S12 13 C NMR spectrum of compound **5**.

Figure S14 13 C NMR spectrum of compound **6**.

Figure S16 ¹³C NMR spectrum of compound 7.

Figure S18 ¹³C NMR spectrum of compound **8**.

Figure S20 ¹³C NMR spectrum of compound **9**. **2. DSC data**

Figure S21 DSC curve of compound **3** with a heating rate of 5 K min⁻¹.

Figure S22 DSC curve of compound 4 with a heating rate of 5 K min⁻¹.

Figure S23 DSC curve of compound **5** with a heating rate of 5 K min⁻¹.

Figure S24 DSC curve of compound 6 with a heating rate of 5 K min⁻¹.

Figure S25 DSC curve of compound 7 with a heating rate of 5 K min⁻¹.

Figure S26 DSC curve of compound **8** with a heating rate of 5 K min⁻¹.

Figure S27 DSC curve of compound **9** with a heating rate of 5 K min⁻¹.

3. Crystallographic data for compound 4

(a)

(b) Figure S28: (a) Displacement ellipsoid plot (30%) of salt 4. (b) Ball-and-stick packing diagram of salt 4 viewed down the a-axis. The dashed lines indicate hydrogen bonding.

Identification code	mo_d8v18858_0m		
Empirical formula	C5 H10 N10 O6		
Formula weight	306.23		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 11.0337(7) Å	<i>α</i> = 90°.	
	$b = 11.2495(6) \text{ Å}$ $\beta = 105.107$		
	$c = 9.7684(6) \text{ Å}$ $\gamma = 90^{\circ}.$		
Volume	1170.59(12) Å ³		
Z	4		
Density (calculated)	1.738 Mg/m ³		
Absorption coefficient	0.155 mm ⁻¹		
F(000)	632		
Crystal size	0.180 x 0.150 x 0.120 mm ³		
Theta range for data collection	2.633 to 25.980°.		
Index ranges	-13<=h<=13, -13<=k<=13, -12	<=1<=12	
Reflections collected	10651		

Table S1.	Crystal data	and structure	refinement	for compound -	4.
	2				

Independent reflections	1134 [R(int) = 0.0318]
Completeness to theta = 25.242°	98.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6680
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1134 / 0 / 117
Goodness-of-fit on F ²	1.082
Final R indices [I>2sigma(I)]	R1 = 0.0295, wR2 = 0.0778
R indices (all data)	R1 = 0.0317, $wR2 = 0.0796$
Extinction coefficient	0.027(7)
Largest diff. peak and hole	0.237 and -0.177 e.Å ⁻³

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for compound **4**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
N(1)	991(1)	6057(1)	3699(1)	35(1)
N(2)	1626(1)	4311(1)	4786(1)	28(1)
N(3)	3066(1)	5265(1)	6860(1)	32(1)
N(4)	3518(1)	4245(1)	7505(1)	30(1)
N(6)	5842(1)	2947(1)	910(1)	36(1)
O(1)	1909(1)	6257(1)	5001(1)	37(1)
O(2)	3303(1)	3255(1)	6955(1)	40(1)
O(3)	4204(1)	4381(1)	8730(1)	43(1)
C(1)	875(1)	4906(1)	3658(1)	25(1)
C(2)	2232(1)	5177(1)	5574(1)	26(1)
C(3)	0	4224(2)	2500	29(1)

Table S3. Bond lengths [Å] and angles [°] for compound **4**.

N(1)-C(1)	1.3000(15)
N(1)-O(1)	1.4223(13)
N(2)-C(2)	1.3122(15)
N(2)-C(1)	1.3690(15)
N(3)-N(4)	1.3407(14)

N(3)-C(2)	1.3537(15)
N(4)-O(2)	1.2323(13)
N(4)-O(3)	1.2471(14)
N(6)-H(6A)	0.92(2)
N(6)-H(6B)	0.88(2)
N(6)-H(6C)	0.99(2)
N(6)-H(6D)	0.84(3)
O(1)-C(2)	1.3455(14)
C(1)-C(3)	1.4936(14)
C(3)-C(1)#1	1.4936(14)
C(3)-H(3)	0.968(15)
C(1)-N(1)-O(1)	103.09(9)
C(2)-N(2)-C(1)	102.57(9)
N(4)-N(3)-C(2)	116.97(10)
O(2)-N(4)-O(3)	121.94(10)
O(2)-N(4)-N(3)	124.22(10)
O(3)-N(4)-N(3)	113.83(10)
H(6A)-N(6)-H(6B)	107.7(19)
H(6A)-N(6)-H(6C)	106.1(16)
H(6B)-N(6)-H(6C)	109.9(16)
H(6A)-N(6)-H(6D)	119(2)
H(6B)-N(6)-H(6D)	117(2)
H(6C)-N(6)-H(6D)	96(2)
C(2)-O(1)-N(1)	106.20(9)
N(1)-C(1)-N(2)	115.35(10)
N(1)-C(1)-C(3)	125.03(11)
N(2)-C(1)-C(3)	119.62(10)
N(2)-C(2)-O(1)	112.77(10)
N(2)-C(2)-N(3)	135.87(11)
O(1)-C(2)-N(3)	111.27(10)
C(1)-C(3)-C(1)#1	118.15(14)
C(1)-C(3)-H(3)	106.7(9)
C(1)#1-C(3)-H(3)	108.2(9)

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	37(1)	26(1)	31(1)	-2(1)	-8(1)	0(1)
N(2)	31(1)	23(1)	25(1)	0(1)	-1(1)	-1(1)
N(3)	36(1)	25(1)	29(1)	-3(1)	-3(1)	2(1)
N(4)	28(1)	30(1)	28(1)	-3(1)	0(1)	2(1)
N(6)	41(1)	25(1)	37(1)	-2(1)	3(1)	0(1)
O(1)	43(1)	22(1)	35(1)	-2(1)	-10(1)	0(1)
O(2)	45(1)	26(1)	42(1)	-4(1)	-5(1)	4(1)
O(3)	47(1)	42(1)	29(1)	-2(1)	-10(1)	6(1)
C(1)	25(1)	23(1)	24(1)	0(1)	3(1)	1(1)
C(2)	27(1)	23(1)	27(1)	-2(1)	4(1)	1(1)
C(3)	32(1)	23(1)	27(1)	0	-2(1)	0

Table S4. Anisotropic displacement parameters (Å²x 10³) for compound **4**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for compound **4**.

	Х	у	Z	U(eq)
H(3)	516(15)	3721(14)	2077(16)	41(4)
H(6A)	5300(20)	3369(19)	210(20)	75(6)
H(6B)	6203(19)	3450(20)	1590(20)	70(6)
H(6C)	5324(19)	2380(20)	1270(20)	74(6)
H(6D)	6310(20)	2440(20)	680(20)	91(8)

C(2)-N(3)-N(4)-O(2)	6.27(18)
C(2)-N(3)-N(4)-O(3)	-174.72(11)
C(1)-N(1)-O(1)-C(2)	0.33(13)
O(1)-N(1)-C(1)-N(2)	-0.63(14)
O(1)-N(1)-C(1)-C(3)	179.09(9)
C(2)-N(2)-C(1)-N(1)	0.66(14)
C(2)-N(2)-C(1)-C(3)	-179.07(9)
C(1)-N(2)-C(2)-O(1)	-0.40(13)
C(1)-N(2)-C(2)-N(3)	175.83(14)
N(1)-O(1)-C(2)-N(2)	0.06(14)
N(1)-O(1)-C(2)-N(3)	-177.12(9)
N(4)-N(3)-C(2)-N(2)	7.5(2)
N(4)-N(3)-C(2)-O(1)	-176.21(10)
N(1)-C(1)-C(3)-C(1)#1	-4.30(9)
N(2)-C(1)-C(3)-C(1)#1	175.41(11)

_

Table S6. Torsion angles [°] for compound **4**.

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1/2

4 Ab Initio computational data

Table 57. Ab Initio computational data	Table S7.	Ab Initio	computational dat	a
--	-----------	-----------	-------------------	---

Species .	E ₀	H _{corr}	ZPE	HOF
Species	(Hartree)	(Hartree)	(Hartree)	(kJ/mol)
$O_2 N \xrightarrow{H} N \xrightarrow{N} N \xrightarrow{N} N O_2 N$	-1079.9555336	0.156665	0.139739	115.9468485
$O_2 N \xrightarrow{N \ominus} N \xrightarrow{N - N} N \xrightarrow{O - N} N \xrightarrow{N - N} N O_2$	-1078.8589014	0.129729	0.113645	18.44134449
CH ₄	-40.3984857	0.048605	0.044793	-74.6 ^[1]
NH ₃	-56.4341763	0.038190	0.034372	-45.9 ^[2]
	-261.5728129	0.050912	0.046541	75[2]
NH ₂ NO ₂	-260.5478787	0.042613	0.039257	-6.1[3]
-NHNO ₂	-260.0119632	0.030444	0.026168	-84.0 ^[4]
CH ₃ CH ₃	-79.6068548	0.079039	0.074609	-84.68 ^[5]
CH ₃ NH ₂	-95.6318759	0.068401	0.064032	-23.0 ^[2]

^a Total energy (*E*₀) calculated by B3LYP/6-31+G**/MP2/6-311++G** method (Hartree/Particle); ^b Values of thermal correction (*H*T) (Hartree/Particle); ^c Zero-point correction (ZPE) (Hartree/Particle); ^d Heat of formation (HOF) (kJ/mol).

5 Detonation performances calculation

Detonation pressure (P) and detonation velocity (D) were calculation according to the Kamlet-Jacobs equations^[6].

$$D = 1.01 \left(N \bar{M}^{1/2} Q^{1/2} \right)^{1/2} (1 + 1.30\rho) \tag{4}$$

$$P = 1.558\rho^2 \bar{M}^{1/2} Q^{1/2} \tag{5}$$

where each term in eqs 4 and 5 is defined as follows: D, the detonation velocity (km s⁻¹); P, the detonation pressure (GPa); N, the moles of detonation gases per gram explosive; M, the average molecular weight of these gases (g mol⁻¹); Q, the heat of detonation (J g⁻¹); and ρ , the loaded density of explosives (g cm⁻³). The measured density was used for the calculation here.

[6](a) M. J. Kamlet, S. J. Jacobs. J. Chem. Phys. 1968, 48, 23-35; (b) M. J. Kamlet, J.

E. Ablard. J. Chem. Phys. 1968, 48, 36-42; (c) M. J. Kamlet, C. Dicknison. J. Chem.

^[1]Y. Huang, H. Gao, B. Twamley, J.M. Shreeve. *Eur. J. Inorg. Chem.* **2008**, 2560-2568.

^[2]W. H, C. He, J. Zhang, J. M. Shreeve. Angew. Chem. Int. Ed. 2015, 54, 9367-9371.

^[3]K. Wang, D. A. Parrish, J. M. Shreeve. Chem. Eur. J. 2011, 17, 14485-14492.

^[4]Y. Tang, J. Zhang, L. A. Mitchell, et al. J. Am. Chem. Soc. 2015, 137, 15984-15987

^[5]C. Ye, H. Gao, B. Twamley and J. M. Shreeve. New. J. Chem. 2008, 32, 317-322.

Phys. **1968**, *48*, 43-49. (d) H. Gao, C. Ye, C. Piekarski, J. M. Shreeve. J. Phys. Chem. C. **2007**, 111, 10718-10731.