Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019



Fig S1. Calculated pictorial representations and energies of HOMOs and LUMOs of TAPy derivatives 1-8 at the B3LYP/6-31+G(d,p)



Fig S2. The vibrational frequencies contributions to the intramolecular reorganization energies of 1 neutral (top), anion and cation (bottom) by means of the B3LYP/6-31+G (d,p) calculation.



Fig S3. The vibrational frequencies contributions to the intramolecular reorganization energies of 2 neutral (top), anion and cation (bottom) by means of the B3LYP/6-31+G (d,p) calculation.



Fig S4. The vibrational frequencies contributions to the intramolecular reorganization energies of 3 neutral (top), anion and cation (bottom) by means of the B3LYP/6-31+G (d,p) calculation.



Fig S5. The vibrational frequencies contributions to the intramolecular reorganization energies of 5 neutral (top), anion and cation (bottom) by means of the B3LYP/6-31+G (d,p) calculation.



Fig S6. The vibrational frequencies contributions to the intramolecular reorganization energies of 6 neutral (top), anion and cation (bottom) by means of the B3LYP/6-31+G (d,p) calculation.



Fig S7. The vibrational frequencies contributions to the intramolecular reorganization energies of 7 neutral (top), anion and cation (bottom) by means of the B3LYP/6-31+G (d,p) calculation.



Fig S8. Crystal structures of two polymorphs of compounds 1 and 3



Fig S9. Crystal structures of compound 2, 4, 5, 6, 7, and 8



Fig S 10. Predicted anisotropic mobilities obtained in the a–b plane in the single crystals for TAPy derivatives 2-8

Table S1 Absolute energies of the neutral and charged species employed to evaluate the intramolecular reorganization energies according to the AP method along with vertical and adiabatic EAs.

| b3pw91/6-  | $E^0(G^0)$ | $E^{+}(G^{+})$ | $E^{-}(G^{-})$ | $E^+(G^0)$ | $E^{-}(G^{0})$ | $E^{0}(G^{+})$ | $E^{\theta}(G^{-})$ |
|------------|------------|----------------|----------------|------------|----------------|----------------|---------------------|
| - <b>F</b> | (-)        | (-)            | (-)            | (-)        | (-)            | (-)            | (-)                 |

| 1                 | -1353.84702 | -1353.48783 | -1353.9446             | -1353.4835   | -1353.9379          | -1353.84185                            | -1353.842619            |
|-------------------|-------------|-------------|------------------------|--------------|---------------------|----------------------------------------|-------------------------|
| 2                 | -1829.38369 | -1829.02376 | -1829.48377            | -1829.01256  | -1829.4768          | -1829.37936                            | -1829.376798            |
| 3                 | -2304.91395 | -2304.56662 | -2305.01511            | -2304.55751  | -2305.00797         | -2304.90422                            | -2304.906698            |
| 4                 | -2134.08269 | -2133.76189 | -2134.17641            | -2133.75582  | -2134.16883         | -2134.07637                            | -2134.075204            |
| 5                 | -6500.89006 | -6500.54487 | -6501.00083            | -6500.54137  | -6500.99420         | -6500.88619                            | -6500.88350             |
| 6                 | -6976.42680 | -6976.08129 | -6976.53953            | -6976.07772  | -6976.53271         | -6976.4226                             | -6976.42005             |
| 7                 | -12428.1619 | -12427.8409 | -12428.2749            | -12427.83830 | -12428.2678         | -12428.1591                            | -12428.15496            |
| 8                 | -3192.09701 | -3191.74877 | -3192.2139             | -3191.74451  | -3192.20732         | -3192.0926                             | -3192.090262            |
| b3lyp/6-31+g(d,p) | $E^0(G^0)$  | $E^+(G^+)$  | $E^{\cdot}(G^{\cdot})$ | $E^+(G^0)$   | $E^{-}(G^{\theta})$ | $E^{\theta}(G^{\scriptscriptstyle +})$ | $E^{\theta}(G^{\cdot})$ |
| 1                 | -1354.06100 | -1353.70615 | -1354.15607            | -1353.7021   | -1354.14939         | -1354.05621                            | -1354.054388            |
| 2                 | -1829.65161 | -1829.30481 | -1829.74924            | -1829.28366  | -1829.74236         | -1829.65623                            | -1829.644796            |
| 3                 | -2305.23702 | -2304.89075 | -2305.33573            | -2304.88233  | -2305.32865         | -2305.22773                            | -2305.230044            |
| 4                 | -2134.41727 | -2134.09686 | -2134.50855            | -2134.09093  | -2134.50103         | -2134.41119                            | -2134.409992            |
| 5                 | -6496.30818 | -6495.96635 | -6496.41655            | -6495.96291  | -6496.41999         | -6496.30439                            | -6496.301683            |
| 6                 | -6971.89943 | -6971.55719 | -6972.00988            | -6971.55374  | -6972.00315         | -6971.8956                             | -6971.892764            |
| 7                 | -12418.9139 | -12418.5941 | -12419.0245            | -12418.5917  | -12419.0174         | -12418.9113                            | -12418.90697            |
| 8                 | -3191.77701 | -3191.41877 | -3191.8939             | -3191.42451  | -3191.89732         | -3191.7636                             | -3191.761262            |

Table S2. Effective frequency  $\omega_{\text{eff}}$  and associated HR factor  $S_{\text{eff}}$  employed in the evaluation of charge transfer rate constants of 1-7 (B3LYP/6-31G\*)

|                   |          | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-------------------|----------|-------|-------|-------|-------|-------|-------|-------|
| Seff              | hole     | 0.949 | 3.721 | 3.808 | 1.878 | 1.936 | 1.688 | 2.986 |
| $W_{eff}$         |          | 2141  | 1040  | 1044  | 1456  | 825   | 970   | 1094  |
| $\lambda_{class}$ |          | 0.004 | 0.012 | 0.008 | 0.035 | 0.021 | 0.031 | 0.016 |
| $S_{eff}$         | electron | 2.133 | 1.759 | 2.269 | 1.970 | 1.458 | 1.980 | 3.141 |
| $W_{eff}$         |          | 1369  | 1710  | 1361  | 1608  | 1969  | 1487  | 1040  |
| $\lambda_{class}$ |          | 0.026 | 0.026 | 0.031 | 0.040 | 0.023 | 0.026 | 0.078 |

Table S3. Charge transfer rate constants calculated by the semiclassical Marcus-Hush and quantum-corrected Marcus-Levich-Jortner models (in s<sup>-1</sup>)

|       |    | $W_{h-MH}$             | $W_{e-MH}$             | $W_{h-MLJ}$            | $W_{e-MLJ}$            |
|-------|----|------------------------|------------------------|------------------------|------------------------|
| 1a/xy | 1  | 6.817×10 <sup>12</sup> | $2.647 \times 10^{8}$  | 2.021×1013             | 3.003×10 <sup>8</sup>  |
|       | 2  | 6.472×1010             | $1.034 \times 10^{10}$ | 1.918×10 <sup>11</sup> | $1.173 \times 10^{10}$ |
|       | 3  | 4.190×10 <sup>11</sup> | $2.680 \times 10^{12}$ | $1.242 \times 10^{12}$ | $3.041 \times 10^{12}$ |
|       | 4  | 7.991×10 <sup>8</sup>  | 4.485×107              | 2.368×10 <sup>9</sup>  | 5.066×10 <sup>7</sup>  |
| yz    | 5  | 4.190×10 <sup>11</sup> | $2.680 \times 10^{12}$ | $1.242 \times 10^{12}$ | $3.041 \times 10^{12}$ |
|       | 6  | 3.328×10 <sup>5</sup>  | 3.376×10 <sup>7</sup>  | 9.864×10 <sup>5</sup>  | 3.831×10 <sup>7</sup>  |
|       | 7  | 5.668×1011             | $1.118 \times 10^{10}$ | 1.680×10 <sup>12</sup> | 1.269×10 <sup>11</sup> |
|       | 8  | 2.995×10 <sup>6</sup>  | 4.136×10 <sup>6</sup>  | $8.878 \times 10^{6}$  | 4.693×10 <sup>6</sup>  |
| XZ    | 9  | 6.817×10 <sup>12</sup> | 2.553×10 <sup>8</sup>  | $2.021 \times 10^{13}$ | 3.003×10 <sup>8</sup>  |
|       | 10 | 3.954×10 <sup>9</sup>  | $1.284 \times 10^{10}$ | $1.172 \times 10^{10}$ | $1.457 \times 10^{10}$ |
|       | 11 | 5.668×10 <sup>11</sup> | $1.112 \times 10^{10}$ | $1.685 \times 10^{12}$ | 1.262×10 <sup>10</sup> |
|       | 12 | 2.609×10 <sup>8</sup>  | 8.440×10 <sup>6</sup>  | 7.733×10 <sup>8</sup>  | 9.577×10 <sup>7</sup>  |

311+g(d,p)

| 1b/xy | 1 | 3.567×10 <sup>11</sup> | 2.433×10 <sup>12</sup> | 1.202×10 <sup>12</sup> | 2.761×10 <sup>12</sup> |
|-------|---|------------------------|------------------------|------------------------|------------------------|
|       | 2 | 2.927×10 <sup>5</sup>  | $1.426 \times 10^{7}$  | 9.864×10 <sup>5</sup>  | 1.618×10 <sup>8</sup>  |
|       | 3 | $3.755 \times 10^{12}$ | 1.155×10 <sup>9</sup>  | 1.266×10 <sup>13</sup> | 1.310×10 <sup>9</sup>  |
|       | 4 | 1.223×10 <sup>13</sup> | $2.28 \times 10^{9}$   | $4.122 \times 10^{13}$ | 2.301×10 <sup>9</sup>  |
| yz    | 5 | 3.567×10 <sup>11</sup> | $2.433 \times 10^{12}$ | $1.202 \times 10^{12}$ | $2.761 \times 10^{12}$ |
|       | 6 | 6.324×10 <sup>9</sup>  | 5.403×10 <sup>9</sup>  | $2.132 \times 10^{10}$ | 6.130×10 <sup>9</sup>  |
|       | 7 | $1.717 \times 10^{12}$ | 2.235×10 <sup>9</sup>  | $3.946 \times 10^{12}$ | $4.805 \times 10^{9}$  |
|       | 8 | 1.725×10 <sup>9</sup>  | $2.110 \times 10^{6}$  | 4.297×10 <sup>9</sup>  | $2.394 \times 10^{6}$  |

Table S4. Calculated center-of-mass distances (in Å), charge transfer integrals (in meV) and charge transfer rate constants (in s<sup>-1</sup>) for all possible hopping channels by the semiclassical Marcus-Hush and quantum-corrected Marcus-Levich-Jortner models.

|    |   | θ      | S      | $V_{ije}$ | $V_{ijh}$ | $W_{h-MH}$            | W <sub>e-MH</sub>     | $W_{h-MLJ}$           | W <sub>e-MLJ</sub>    |
|----|---|--------|--------|-----------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|
| 2  | 1 | 0.00   | 7.116  | 28.87     | -5.43     | 5.96×10 <sup>11</sup> | 1.28×10 <sup>10</sup> | 1.16×10 <sup>12</sup> | 9.72×10 <sup>9</sup>  |
|    | 2 | 54.64  | 8.534  | 10.23     | -45.45    | $7.49 \times 10^{10}$ | 8.95×10 <sup>11</sup> | 1.46×10 <sup>11</sup> | $6.81 \times 10^{11}$ |
|    | 3 | 88.65  | 4.881  | -16.22    | 2.08      | $1.88 \times 10^{11}$ | 1.87×10 <sup>9</sup>  | 3.66×10 <sup>11</sup> | 1.43×10 <sup>9</sup>  |
|    | 4 | 123.53 | 8.723  | 0.03      | 0.11      | $6.44 \times 10^{5}$  | $5.24 \times 10^{6}$  | $1.25 \times 10^{6}$  | 3.99×10 <sup>6</sup>  |
| 3a | 1 | 0.00   | 6.776  | 25.38     | -4.93     | $3.91 \times 10^{11}$ | $4.05 \times 10^{9}$  | 4.70×10 <sup>11</sup> | 5.66×10 <sup>9</sup>  |
|    | 2 | 36.77  | 8.459  | 0.19      | -0.07     | 2.19×10 <sup>5</sup>  | $8.17 \times 10^{5}$  | $2.63 \times 10^{7}$  | $1.14 \times 10^{6}$  |
|    | 3 | 90.00  | 5.063  | -0.22     | 1.26      | $2.94 \times 10^{7}$  | $2.65 \times 10^{8}$  | $3.53 \times 10^{7}$  | $3.70 \times 10^{8}$  |
|    | 4 | 143.23 | 8.459  | 10.45     | 35.01     | 6.63×10 <sup>10</sup> | $2.04 \times 10^{11}$ | 7.96×10 <sup>10</sup> | $6.52 \times 10^{11}$ |
| 3b | 1 | 0.00   | 8.662  | 6.37      | 41.9      | $2.46 \times 10^{10}$ | 2.93×10 <sup>11</sup> | 2.96×1010             | 4.09×10 <sup>11</sup> |
|    | 2 | 32.27  | 10.244 | 0.15      | -0.21     | $1.37 \times 10^{7}$  | 7.35×10 <sup>6</sup>  | $1.64 \times 10^{7}$  | $1.03 \times 10^{7}$  |
|    | 3 | 90.00  | 5.469  | -14.11    | -0.62     | $1.21 \times 10^{11}$ | $6.41 \times 10^{7}$  | $1.45 \times 10^{11}$ | 8.95×10 <sup>7</sup>  |
|    | 4 | 147.73 | 10.244 | -0.35     | 1.8       | $7.44 \times 10^{7}$  | 5.40×10 <sup>8</sup>  | 8.93×10 <sup>7</sup>  | 7.54×10 <sup>8</sup>  |
| 4  | 1 | 0.00   | 8.561  | -8.32     | 53.63     | $3.45 \times 10^{10}$ | $3.20 \times 10^{12}$ | $5.49 \times 10^{10}$ | $2.81 \times 10^{12}$ |
|    | 2 | 41.12  | 5.682  | -84.57    | -3.95     | $3.57 \times 10^{12}$ | $1.74 \times 10^{10}$ | $5.68 \times 10^{12}$ | $1.52 \times 10^{10}$ |
|    | 3 | 138.84 | 5.682  | -84.5     | -3.91     | $3.56 \times 10^{12}$ | $1.70 \times 10^{10}$ | $5.67 \times 10^{12}$ | $1.49 \times 10^{10}$ |
| 6  | 1 | 0.00   | 4.959  | 29.68     | -4.6      | $6.88 \times 10^{11}$ | 9.94×1010             | 9.83×10 <sup>11</sup> | $2.76 \times 10^{10}$ |
|    | 2 | 69.80  | 8.895  | 0.01      | -0.03     | $7.81 \times 10^{4}$  | $4.23 \times 10^{6}$  | $1.12 \times 10^{5}$  | $1.18 \times 10^{6}$  |
|    | 3 | 102.74 | 8.559  | -14.14    | 4.75      | $1.56 \times 10^{11}$ | $1.06 \times 10^{11}$ | 2.23×10 <sup>11</sup> | $4.95 \times 10^{10}$ |
|    | 4 | 129.36 | 10.797 | 7.61      | 8.91      | $4.52 \times 10^{10}$ | $3.73 \times 10^{11}$ | 6.46×10 <sup>10</sup> | $1.04 \times 10^{11}$ |
| 7  | 1 | 0.00   | 12.987 | -0.19     | 6.2       | $2.37 \times 10^{7}$  | $3.80 \times 10^{11}$ | $4.55 \times 10^{7}$  | $2.97 \times 10^{11}$ |
|    | 2 | 44.95  | 9.175  | -7.28     | 2.34      | $3.47 \times 10^{10}$ | $5.42 \times 10^{10}$ | 6.69×10 <sup>10</sup> | $4.23 \times 10^{10}$ |
|    | 3 | 135.05 | 9.175  | -7.12     | 2.42      | $3.32 \times 10^{10}$ | $5.80 \times 10^{10}$ | 6.39×1010             | $4.53 \times 10^{10}$ |
| 8  | 1 | 0.00   | 5.101  | -40.24    | -14.99    | $1.35 \times 10^{12}$ | $7.93 \times 10^{11}$ | -                     | -                     |
|    | 2 | 48.04  | 10.35  | -10.78    | -9.98     | $9.70 \times 10^{10}$ | 3.52×10 <sup>11</sup> | -                     | -                     |
|    | 3 | 76.70  | 7.908  | -4.06     | 5.24      | $1.38 \times 10^{10}$ | 9.69×10 <sup>10</sup> | -                     | -                     |
|    | 4 | 113.10 | 8.366  | 0.36      | -0.02     | 1.08×10 <sup>8</sup>  | 1.41×10 <sup>6</sup>  | -                     |                       |