Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Synthesis, characterization and antimicrobial evaluation of ferrocene-oxime ether benzyl 1*H*-1,2,3-triazole hybrids

Yagnam Swetha,^{a,b} Eda Rami Reddy,^{a,f} Jakku Ranjith Kumar,^a Rajiv Trivedi^{*a,b}, Lingamallu Giribabu,^{b,c} Balasubramanian Sridhar,^d Balaji Rathod,^e and Reddy Shetty Prakasham^e

- e Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.
- ^{d.} Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- e. Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- ^{f.} Department of Chemistry, Indian Institute of Technology, Indore 453552, India.

^{a.} Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India. E-mail: trivedi@iict.res.in, rtrajiv401@gmail.com

^{b.} Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad 500007, India

Contents

1.	¹ H, ¹³ C and HRMS spectra of 3 and 5a-h	3-16
2.	Stability studies	17-18
3.	Crystallographic data of compound 5a	19-29

Figure S2: ¹³C NMR spectra of 3

Figure S3: ESI-MS spectra of 3

Figure S4: ¹H NMR spectra of 5a

Figure S6: HRMS spectra of 5a

Figure S10: ¹H NMR spectra of 5c

Figure S16: ¹H NMR spectra of 5e

Figure S20: ¹³C NMR spectra of 5f

Figure S23: ¹³C NMR spectra of 5g

Figure S26: ¹³C NMR spectra of 5h

Stability Studies

(a)

Figure S28: UV-visible spectroscopy of compound **5a** in (a) DMSO and (b) 10% DMSO in PBS solution (pH 7.4).

Figure 29: Stacked ¹H-NMR spectrum of compound **5a** in DMSO-d₆ at different time intervals (0, 4 and 24 hr.).

Crystallographic data of compound 5a

Table S1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **5a**. U (eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
C(1)	5399(1)	3549(2)	5987(2)	47(1)	
C(2)	4930(1)	2649(3)	5382(3)	70(1)	
C(3)	4252(2)	2516(4)	5779(4)	96(1)	
C(4)	4036(2)	3290(4)	6784(4)	105(1)	
C(5)	4495(2)	4201(4)	7379(3)	100(1)	
C(6)	5180(2)	4337(3)	6998(2)	70(1)	
C(7)	6133(1)	3763(2)	5543(2)	52(1)	
C(8)	6767(1)	2131(2)	4096(2)	41(1)	
C(9)	7054(1)	851(2)	4314(2)	38(1)	
C(10)	7449(1)	-64(2)	3449(2)	51(1)	
C(11)	8428(1)	2420(2)	2039(2)	38(1)	
C(12)	9010(1)	3392(2)	2271(2)	36(1)	
C(13)	9441(1)	3609(2)	3448(2)	42(1)	
C(14)	9934(1)	4672(2)	3220(2)	49(1)	
C(15)	9811(1)	5122(2)	1920(2)	50(1)	
C(16)	9241(1)	4346(2)	1333(2)	43(1)	
C(17)	8312(1)	5934(2)	4402(2)	50(1)	
C(18)	7879(1)	5733(2)	3251(2)	47(1)	
C(19)	8098(1)	6659(2)	2310(2)	46(1)	
C(20)	8668(1)	7433(2)	2873(2)	47(1)	
C(21)	8806(1)	6989(2)	4165(2)	49(1)	
Fe(1)	8917(1)	5379(1)	2916(1)	32(1)	
N(1)	6485(1)	2479(2)	5206(1)	39(1)	
N(2)	6589(1)	1471(2)	6086(2)	50(1)	
N(3)	6936(1)	475(2)	5542(2)	46(1)	
N(4)	8292(1)	1517(2)	2882(2)	43(1)	
O(1)	7710(1)	679(1)	2392(1)	47(1)	

C(1)-C(2)	1.361(3)
C(1)-C(6)	1.376(3)
C(1)-C(7)	1.502(3)
C(2)-C(3)	1.376(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.362(5)
C(3)-H(3)	0.9300
C(4)-C(5)	1.353(5)
C(4)-H(4)	0.9300
C(5)-C(6)	1.381(4)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-N(1)	1.461(2)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(8)-N(1)	1.337(2)
C(8)-C(9)	1.363(3)
C(8)-H(8)	0.9300
C(9)-N(3)	1.350(2)
C(9)-C(10)	1.492(3)
C(10)-O(1)	1.420(2)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-N(4)	1.270(2)
C(11)-C(12)	1.452(2)
C(11)-H(11)	0.9300
C(12)-C(16)	1.427(3)
C(12)-C(13)	1.429(3)
C(12)-Fe(1)	2.0445(17)
C(13)-C(14)	1.416(3)
C(13)-Fe(1)	2.0322(18)
C(13)-H(13)	0.9300
C(14)-C(15)	1.413(3)
C(14)-Fe(1)	2.0395(18)

 Table S2.
 Bond lengths [Å] and angles [°] for compound 5a.

C(14)-H(14)	0.9300
C(15)-C(16)	1.412(3)
C(15)-Fe(1)	2.0484(19)
C(15)-H(15)	0.9300
C(16)-Fe(1)	2.0422(18)
C(16)-H(16)	0.9300
C(17)-C(18)	1.408(3)
C(17)-C(21)	1.414(3)
C(17)-Fe(1)	2.0429(19)
С(17)-Н(17)	0.9300
C(18)-C(19)	1.402(3)
C(18)-Fe(1)	2.0396(18)
C(18)-H(18)	0.9300
C(19)-C(20)	1.401(3)
C(19)-Fe(1)	2.0431(18)
C(19)-H(19)	0.9300
C(20)-C(21)	1.407(3)
C(20)-Fe(1)	2.0399(19)
C(20)-H(20)	0.9300
C(21)-Fe(1)	2.0399(19)
C(21)-H(21)	0.9300
N(1)-N(2)	1.337(2)
N(2)-N(3)	1.311(2)
N(4)-O(1)	1.428(2)
C(2)-C(1)-C(6)	118.8(2)
C(2)-C(1)-C(7)	122.1(2)
C(6)-C(1)-C(7)	119.0(2)
C(1)-C(2)-C(3)	120.7(3)
C(1)-C(2)-H(2)	119.6
C(3)-C(2)-H(2)	119.6
C(4)-C(3)-C(2)	120.5(3)
C(4)-C(3)-H(3)	119.7
C(2)-C(3)-H(3)	119.7
C(5)-C(4)-C(3)	119.1(3)
C(5)-C(4)-H(4)	120.5

C(3)-C(4)-H(4)	120.5
C(4)-C(5)-C(6)	121.0(3)
C(4)-C(5)-H(5)	119.5
C(6)-C(5)-H(5)	119.5
C(1)-C(6)-C(5)	119.9(3)
C(1)-C(6)-H(6)	120.1
C(5)-C(6)-H(6)	120.1
N(1)-C(7)-C(1)	113.46(17)
N(1)-C(7)-H(7A)	108.9
C(1)-C(7)-H(7A)	108.9
N(1)-C(7)-H(7B)	108.9
C(1)-C(7)-H(7B)	108.9
H(7A)-C(7)-H(7B)	107.7
N(1)-C(8)-C(9)	105.25(16)
N(1)-C(8)-H(8)	127.4
C(9)-C(8)-H(8)	127.4
N(3)-C(9)-C(8)	108.09(16)
N(3)-C(9)-C(10)	121.47(17)
C(8)-C(9)-C(10)	130.43(17)
O(1)-C(10)-C(9)	111.82(16)
O(1)-C(10)-H(10A)	109.3
C(9)-C(10)-H(10A)	109.3
O(1)-C(10)-H(10B)	109.3
C(9)-C(10)-H(10B)	109.3
H(10A)-C(10)-H(10B)	107.9
N(4)-C(11)-C(12)	121.20(17)
N(4)-C(11)-H(11)	119.4
C(12)-C(11)-H(11)	119.4
C(16)-C(12)-C(13)	107.33(16)
C(16)-C(12)-C(11)	124.75(17)
C(13)-C(12)-C(11)	127.90(17)
C(16)-C(12)-Fe(1)	69.49(10)
C(13)-C(12)-Fe(1)	69.02(10)
C(11)-C(12)-Fe(1)	125.52(12)
C(14)-C(13)-C(12)	107.90(18)
C(14)-C(13)-Fe(1)	69.93(11)

C(12)-C(13)-Fe(1)	69.94(10)
C(14)-C(13)-H(13)	126.0
C(12)-C(13)-H(13)	126.0
Fe(1)-C(13)-H(13)	125.7
C(15)-C(14)-C(13)	108.31(18)
C(15)-C(14)-Fe(1)	70.12(11)
C(13)-C(14)-Fe(1)	69.38(10)
C(15)-C(14)-H(14)	125.8
C(13)-C(14)-H(14)	125.8
Fe(1)-C(14)-H(14)	126.2
C(16)-C(15)-C(14)	108.27(18)
C(16)-C(15)-Fe(1)	69.58(10)
C(14)-C(15)-Fe(1)	69.44(11)
C(16)-C(15)-H(15)	125.9
C(14)-C(15)-H(15)	125.9
Fe(1)-C(15)-H(15)	126.7
C(15)-C(16)-C(12)	108.18(18)
C(15)-C(16)-Fe(1)	70.05(11)
C(12)-C(16)-Fe(1)	69.65(10)
C(15)-C(16)-H(16)	125.9
C(12)-C(16)-H(16)	125.9
Fe(1)-C(16)-H(16)	126.0
C(18)-C(17)-C(21)	107.79(18)
C(18)-C(17)-Fe(1)	69.71(11)
C(21)-C(17)-Fe(1)	69.63(11)
C(18)-C(17)-H(17)	126.1
C(21)-C(17)-H(17)	126.1
Fe(1)-C(17)-H(17)	126.1
C(19)-C(18)-C(17)	108.24(18)
C(19)-C(18)-Fe(1)	70.04(11)
C(17)-C(18)-Fe(1)	69.96(11)
C(19)-C(18)-H(18)	125.9
C(17)-C(18)-H(18)	125.9
Fe(1)-C(18)-H(18)	125.7
C(20)-C(19)-C(18)	107.97(18)
C(20)-C(19)-Fe(1)	69.80(11)

C(18)-C(19)-Fe(1)	69.78(11)
C(20)-C(19)-H(19)	126.0
C(18)-C(19)-H(19)	126.0
Fe(1)-C(19)-H(19)	126.0
C(19)-C(20)-C(21)	108.46(18)
C(19)-C(20)-Fe(1)	70.06(11)
C(21)-C(20)-Fe(1)	69.82(11)
C(19)-C(20)-H(20)	125.8
C(21)-C(20)-H(20)	125.8
Fe(1)-C(20)-H(20)	125.9
C(20)-C(21)-C(17)	107.53(18)
C(20)-C(21)-Fe(1)	69.82(11)
C(17)-C(21)-Fe(1)	69.86(11)
C(20)-C(21)-H(21)	126.2
C(17)-C(21)-H(21)	126.2
Fe(1)-C(21)-H(21)	125.7
C(13)-Fe(1)-C(14)	40.69(8)
C(13)-Fe(1)-C(20)	158.80(8)
C(14)-Fe(1)-C(20)	122.85(8)
C(13)-Fe(1)-C(21)	122.74(8)
C(14)-Fe(1)-C(21)	107.13(8)
C(20)-Fe(1)-C(21)	40.35(8)
C(13)-Fe(1)-C(18)	123.37(8)
C(14)-Fe(1)-C(18)	158.95(9)
C(20)-Fe(1)-C(18)	67.54(8)
C(21)-Fe(1)-C(18)	67.94(8)
C(13)-Fe(1)-C(16)	68.75(8)
C(14)-Fe(1)-C(16)	68.23(8)
C(20)-Fe(1)-C(16)	122.63(8)
C(21)-Fe(1)-C(16)	157.91(9)
C(18)-Fe(1)-C(16)	124.09(8)
C(13)-Fe(1)-C(17)	107.75(8)
C(14)-Fe(1)-C(17)	122.68(9)
C(20)-Fe(1)-C(17)	67.74(8)
C(21)-Fe(1)-C(17)	40.51(9)
C(18)-Fe(1)-C(17)	40.34(8)

C(16)-Fe(1)-C(17)	160.16(9)
C(13)-Fe(1)-C(19)	159.35(8)
C(14)-Fe(1)-C(19)	158.90(9)
C(20)-Fe(1)-C(19)	40.14(8)
C(21)-Fe(1)-C(19)	67.84(8)
C(18)-Fe(1)-C(19)	40.18(8)
C(16)-Fe(1)-C(19)	108.26(8)
C(17)-Fe(1)-C(19)	67.73(8)
C(13)-Fe(1)-C(12)	41.04(7)
C(14)-Fe(1)-C(12)	68.55(8)
C(20)-Fe(1)-C(12)	158.76(8)
C(21)-Fe(1)-C(12)	159.57(8)
C(18)-Fe(1)-C(12)	108.50(8)
C(16)-Fe(1)-C(12)	40.86(7)
C(17)-Fe(1)-C(12)	123.74(8)
C(19)-Fe(1)-C(12)	123.34(8)
C(13)-Fe(1)-C(15)	68.38(8)
C(14)-Fe(1)-C(15)	40.45(9)
C(20)-Fe(1)-C(15)	107.67(8)
C(21)-Fe(1)-C(15)	122.17(9)
C(18)-Fe(1)-C(15)	159.63(9)
C(16)-Fe(1)-C(15)	40.38(8)
C(17)-Fe(1)-C(15)	158.22(9)
C(19)-Fe(1)-C(15)	123.45(9)
C(12)-Fe(1)-C(15)	68.34(8)
N(2)-N(1)-C(8)	110.45(16)
N(2)-N(1)-C(7)	120.41(16)
C(8)-N(1)-C(7)	129.08(16)
N(3)-N(2)-N(1)	107.40(15)
N(2)-N(3)-C(9)	108.82(15)
C(11)-N(4)-O(1)	109.52(15)
C(10)-O(1)-N(4)	108.29(15)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U22	U33	U23	U13	U12	
C(1)	53(1)	45(1)	42(1)	4(1)	8(1)	12(1)	
C(2)	61(2)	66(2)	86(2)	-11(1)	13(1)	-5(1)	
C(3)	59(2)	83(2)	145(3)	24(2)	10(2)	-4(2)	
C(4)	63(2)	110(3)	148(3)	67(3)	44(2)	41(2)	
C(5)	106(3)	115(3)	85(2)	25(2)	49(2)	68(2)	
C(6)	81(2)	74(2)	55(1)	-5(1)	9(1)	35(1)	
C(7)	61(1)	37(1)	58(1)	-6(1)	11(1)	2(1)	
C(8)	52(1)	39(1)	33(1)	5(1)	10(1)	-1(1)	
C(9)	37(1)	36(1)	40(1)	1(1)	8(1)	-5(1)	
C(10)	55(1)	36(1)	63(1)	-3(1)	22(1)	-2(1)	
C(11)	39(1)	35(1)	41(1)	-9(1)	8(1)	5(1)	
C(12)	36(1)	33(1)	41(1)	-5(1)	10(1)	6(1)	
C(13)	39(1)	38(1)	50(1)	0(1)	4(1)	10(1)	
C(14)	32(1)	48(1)	66(1)	-10(1)	4(1)	4(1)	
C(15)	42(1)	44(1)	66(1)	-5(1)	26(1)	-2(1)	
C(16)	46(1)	43(1)	42(1)	-3(1)	17(1)	4(1)	
C(17)	61(1)	48(1)	43(1)	2(1)	20(1)	14(1)	
C(18)	35(1)	42(1)	65(1)	-9(1)	13(1)	3(1)	
C(19)	47(1)	45(1)	45(1)	-3(1)	0(1)	15(1)	
C(20)	51(1)	31(1)	61(1)	0(1)	14(1)	4(1)	
C(21)	50(1)	46(1)	50(1)	-19(1)	-1(1)	8(1)	
Fe(1)	31(1)	30(1)	36(1)	-3(1)	7(1)	3(1)	
N(1)	44(1)	37(1)	37(1)	5(1)	9(1)	1(1)	
N(2)	64(1)	48(1)	39(1)	9(1)	11(1)	4(1)	
N(3)	55(1)	41(1)	43(1)	7(1)	6(1)	6(1)	
N(4)	38(1)	41(1)	50(1)	-6(1)	9(1)	-2(1)	
O(1)	49(1)	44(1)	50(1)	-10(1)	17(1)	-10(1)	

Table S3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for compound **5a**. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	Х	У	Z	U(eq)
H(2)	5070	2117	4692	84
H(3)	3938	1894	5358	115
H(4)	3578	3192	7058	127
H(5)	4348	4745	8054	120
H(6)	5492	4959	7423	84
H(7A)	6103	4367	4789	62
H(7B)	6421	4226	6228	62
H(8)	6767	2652	3337	49
H(10A)	7845	-490	3951	61
H(10B)	7136	-797	3113	61
H(11)	8150	2459	1260	46
H(13)	9404	3136	4227	50
H(14)	10279	5015	3823	58
H(15)	10062	5810	1520	60
H(16)	9050	4442	482	52
H(17)	8280	5458	5180	60
H(18)	7511	5095	3134	56
H(19)	7900	6745	1463	55
H(20)	8913	8122	2461	56
H(21)	9159	7328	4757	59

Table S4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for compound **5a**.

C(6)-C(1)-C(2)-C(3)	-0.7(4)
C(7)-C(1)-C(2)-C(3)	-177.3(2)
C(1)-C(2)-C(3)-C(4)	0.3(5)
C(2)-C(3)-C(4)-C(5)	0.7(5)
C(3)-C(4)-C(5)-C(6)	-1.3(5)
C(2)-C(1)-C(6)-C(5)	0.1(4)
C(7)-C(1)-C(6)-C(5)	176.9(2)
C(4)-C(5)-C(6)-C(1)	0.9(4)
C(2)-C(1)-C(7)-N(1)	-42.5(3)
C(6)-C(1)-C(7)-N(1)	140.8(2)
N(1)-C(8)-C(9)-N(3)	0.0(2)
N(1)-C(8)-C(9)-C(10)	-179.04(19)
N(3)-C(9)-C(10)-O(1)	-161.09(17)
C(8)-C(9)-C(10)-O(1)	17.8(3)
N(4)-C(11)-C(12)-C(16)	173.69(17)
N(4)-C(11)-C(12)-C(13)	-8.1(3)
N(4)-C(11)-C(12)-Fe(1)	-98.0(2)
C(16)-C(12)-C(13)-C(14)	-0.73(19)
C(11)-C(12)-C(13)-C(14)	-179.22(17)
Fe(1)-C(12)-C(13)-C(14)	-59.88(13)
C(16)-C(12)-C(13)-Fe(1)	59.15(12)
C(11)-C(12)-C(13)-Fe(1)	-119.34(17)
C(12)-C(13)-C(14)-C(15)	0.4(2)
Fe(1)-C(13)-C(14)-C(15)	-59.52(13)
C(12)-C(13)-C(14)-Fe(1)	59.88(12)
C(13)-C(14)-C(15)-C(16)	0.1(2)
Fe(1)-C(14)-C(15)-C(16)	-58.91(13)
C(13)-C(14)-C(15)-Fe(1)	59.06(13)
C(14)-C(15)-C(16)-C(12)	-0.6(2)
Fe(1)-C(15)-C(16)-C(12)	-59.43(12)
C(14)-C(15)-C(16)-Fe(1)	58.83(13)
C(13)-C(12)-C(16)-C(15)	0.8(2)
C(11)-C(12)-C(16)-C(15)	179.37(16)
Fe(1)-C(12)-C(16)-C(15)	59.68(13)

 Table S5.
 Torsion angles [°] for compound 5a.

C(13)-C(12)-C(16)-Fe(1)	-58.85(12)
C(11)-C(12)-C(16)-Fe(1)	119.69(16)
C(21)-C(17)-C(18)-C(19)	-0.4(2)
Fe(1)-C(17)-C(18)-C(19)	-59.82(13)
C(21)-C(17)-C(18)-Fe(1)	59.44(13)
C(17)-C(18)-C(19)-C(20)	0.2(2)
Fe(1)-C(18)-C(19)-C(20)	-59.58(13)
C(17)-C(18)-C(19)-Fe(1)	59.76(13)
C(18)-C(19)-C(20)-C(21)	0.1(2)
Fe(1)-C(19)-C(20)-C(21)	-59.47(14)
C(18)-C(19)-C(20)-Fe(1)	59.56(13)
C(19)-C(20)-C(21)-C(17)	-0.3(2)
Fe(1)-C(20)-C(21)-C(17)	-59.94(13)
C(19)-C(20)-C(21)-Fe(1)	59.62(13)
C(18)-C(17)-C(21)-C(20)	0.4(2)
Fe(1)-C(17)-C(21)-C(20)	59.92(13)
C(18)-C(17)-C(21)-Fe(1)	-59.49(13)
C(9)-C(8)-N(1)-N(2)	0.1(2)
C(9)-C(8)-N(1)-C(7)	177.35(18)
C(1)-C(7)-N(1)-N(2)	-58.5(2)
C(1)-C(7)-N(1)-C(8)	124.6(2)
C(8)-N(1)-N(2)-N(3)	-0.2(2)
C(7)-N(1)-N(2)-N(3)	-177.68(17)
N(1)-N(2)-N(3)-C(9)	0.2(2)
C(8)-C(9)-N(3)-N(2)	-0.1(2)
C(10)-C(9)-N(3)-N(2)	179.04(17)
C(12)-C(11)-N(4)-O(1)	-178.41(14)
C(9)-C(10)-O(1)-N(4)	72.8(2)
C(11)-N(4)-O(1)-C(10)	-164.92(15)

Symmetry transformations used to generate equivalent atoms: