Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material (ESI)

Enhancing Upconversion Luminescence Properties of Er³⁺-Yb³⁺ Doped Yttrium Molybdate through Mg²⁺ Incorporation: Effect of Laser Excitation Power on Temperature Sensing and Heat Generation

Shriya Sinha^a, Manoj K. Mahata^{a, b, *} and Kaushal Kumar^a

¹Optical Materials & Bio-imaging Research Laboratory, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad-826004, India

²Second Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

^{*}Corresponding author's e-mail address: manoj_physics@hotmail.com

Table S1: Comparison of maximum UC QY measured for different materials at their corresponding saturation regime of power density.

Sample	Power density (W/cm ²)	Total QY (%)	References
SrLa ₂ (MoO ₄) ₄ : Er/Yb	45	2.99	1
La ₂ O ₂ S: Er/Yb	13	5.83	2
NaYF ₄ : Er/Yb	20	3.0	3
SrF ₂ : Er/Yb	388	0.0057	4
YMoO ₄ : Er/Yb/Mg	35	2.48	present work
			1

Table S2: Calculated temperature and the corresponding FIR values at various pump powerdensities for YMoO4: 0.3 mol% Er^{3+} 3 mol% Yb^{3+} 15 mol% Mg^{2+} phosphor.

Power density	YMoO ₄ : 0.3 mol% Er ³⁺ - 3 mol% Yb ³⁺ - 15 mol% Mg ²⁺			
(W/cm^2)	FIR value	Temperature (K)	Temperature (K)	
		(7 W/cm ²)	(66 W/cm ²)	
7	1.472	285	304	
19	1.910	321	362	
30	2.226	346	407	
40	2.424	363	434	
55	2.520	371	452	
66	2.623	380	470	

Fig. S1 Variation of emission quantum efficiency with excitation power densities for $YMoO_4$: 0.3 mol% Er^{3+} - 3 mol% Yb^{3+} and $YMoO_4$: 0.3 mol% Er^{3+} - 3 mol% Yb^{3+} - 15 mol% Mg^{2+} phosphors. Maximum quantum efficiency is achieved around 35 W/cm². Beyond this excitation power, a saturation in the quantum yield is observed.

Fig. S2 Lifetime curves for ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ transition of Er^{3+} for YMoO₄: 0.3 mol% Er^{3+} - 3 mol% Yb³⁺ phosphor co-doped with different concentrations of Mg²⁺ ions (0, 5, 10, and 15 mol%) under 980 nm light excitation.

Fig. S3 Temperature dependent UC emission spectra for 530 nm $({}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2})$ and 552 nm $({}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2})$ bands of YMoO₄: 0.3 mol% Er³⁺- 3 mol% Yb³⁺- 15 mol% Mg²⁺ phosphor excited by 980 nm excitation (a) at 19 W/cm² excitation power density; (b) at 66 W/cm² excitation power density.

Fig. S4 Variation of FIR (I_{530}/I_{552}) as a function of absolute temperature for YMoO₄: 0.3 mol% Er³⁺- 3 mol% Yb³⁺- 15 mol% Mg²⁺ phosphor at three different excitation power density (7, 19 and 66 W/cm²).

Fig. S5 Variation of UC emission intensity at different excitation power densities for $YMoO_4$: 0.3 mol% Er^{3+} 3 mol% Yb^{3+} 15 mol% Mg^{2+} phosphor.

References

- 1. S. Sinha, K. Kumar, Opt. Mater., 2018, 75, 770.
- 2. M. Pokhrel, A. K. Gangadharan, D. K.Sardar, Materials Letters, 2013, 99, 86.
- 3. J. C. Boyer, F. C. J. M. van Veggel, Nanoscale, 2010, 2, 1417.
- S. Balabhadra, M.L. Debasu, C.D.S. Brites, R.A.S. Ferreira, L.D. Carlos, J. Lumin. 189 2017, 189, 64.