Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

New Journal of Chemistry

Supplementary Information

Electrochemical study of fast blue BB. A green strategy for sulfination of fast blue BB

Mahmood Masoudi Khoram, Davood Nematollahi*, Mahdi Jamshidi and Hamed Goljani

Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, Zip Code: 65178-38683.

E-mail: nemat@basu.ac.ir, Fax: +98-813-8257407

Table of contents

1	Δ <i>E</i> of cyclic voltammograms of FBBB	Page S1
2	Cyclic voltammogram of FBBB in various scan rates	Page S2
3	Cyclic voltammogram of FBBB in various concentrations	Page S4
4	Calculation of the electroactive surface of the electrode	Page S6
5	FTIR spectrum of 3a	Page S7
6	Mass spectrum of 3a	Page S8
7	¹ H NMR spectrum of 3a	Page S9
8	¹ H NMR spectrum of 3a (with D ₂ O)	Page S10
9	¹³ C NMR spectrum of 3a	Page S11
10	FTIR spectrum of 3b	Page S12
11	Mass spectrum of 3b	Page S13
12	¹ H NMR spectrum of 3b	Page S14
13	¹³ C NMR spectrum of 3b	Page S15
14	FTIR spectrum of 3c	Page S16
15	Mass spectrum of 3c	Page S17
16	¹ H NMR spectrum of 3c	Page S18
17	¹³ C NMR spectrum of 3c	Page S19

Table 1: ΔE obtained from cyclic voltammogram of 1 mM **FBBB**, in water (different pH values/ethanol mixture) (70/30, v/v). Scan rate: 10 mV/s. Temperature =25±1 °C.

рН	1.0	1.6	2.4	3.3	4.1	5.0	6.0	6.9	7.8	9.7	10.9
ΔΕ/V	0.037	0.039	0.056	0.074	0.115	0.177	0.267	0.272	0.314	0.364	0.375

Effect of scan rate on cyclic voltammogram of FBBB in various pH values

Cyclic voltammograms of different amounts of **FBBB** (1.0, 2.0 and 4.0 mM) in various scan rates at glassy carbon electrode, in water (perchloric acid, 0.1 M)/ethanol mixture (70/30, v/v). Scan rate: (a) 25 mV/s, (b) 100 mV/s and (c) 300 mV/s. Temperature = 25 ± 1 °C.

Cyclic voltammograms of different amounts of **FBBB** (1.0, 2.0 and 4.0 mM) in various scan rates at glassy carbon electrode, in acetate buffer (c = 0.2 M, pH = 4.0) /ethanol mixture (70/30, v/v). Scan rate: (a) 25 mV/s, (b) 100 mV/s and (c) 300 mV/s. Temperature =25±1 °C.

Cyclic voltammograms of different amounts of **FBBB** (1.0, 2.0 and 4.0 mM) in various scan rates at glassy carbon electrode, in water (phosphate buffer, c = 0.2 M, pH =7.0)/ethanol mixture (70/30, v/v). Scan rate: (a) 25 mV/s, (b) 100 mV/s and (c) 300 mV/s. Temperature =25±1 °C.

Cyclic voltammograms of different amounts of **FBBB** (1.0, 2.0 and 4.0 mM) in various scan rates at glassy carbon electrode, in water (carbonate buffer, c=0.2, pH=11)/ethanol mixture (70/30, v/v). Scan rate: (a) 25 mV/s, (b) 100 mV/s and (c) 300 mV/s. Temperature =25±1 °C.

Effect of FBBB concentration on cyclic voltammograms in various pH values

Cyclic voltammograms of **FBBB** in various concentrations at glassy carbon electrode, in water (perchloric acid, 0.1 M)/ethanol mixture (70/30, v/v). **FBBB** concentration: (a) 1 mM, (b) 2 mM and (c) 3 mM. Temperature = 25 ± 1 °C.

Cyclic voltammograms of **FBBB** in various concentrations at glassy carbon electrode, in acetate buffer (c = 0.2 M, pH = 4.0)/ethanol mixture (70/30, v/v). **FBBB** concentration: (a) 1 mM, (b) 2 mM and (c) 3mM. Temperature =25±1 °C.

Cyclic voltammograms of **FBBB** in various concentrations at glassy carbon electrode in water (phosphate buffer, c = 0.2 M, pH =7.0)//ethanol mixture (70/30, v/v). **FBBB** concentration: (a) 1 mM, (b) 2 mM and (c) 3 mM. Temperature =25±1 °C.

Cyclic voltammograms of **FBBB** in various concentrations at glassy carbon electrode in water (carbonate buffer, c=0.2, pH=11)/ethanol mixture (70/30, v/v). **FBBB** concentration: (a) 1 mM, (b) 2 mM and (c) 3 mM. Temperature =25±1 °C.

The diffusion coefficient of FBBB was calculated using randles-sevcik equation:

$$i_p = (2.69 \times 10^5) n^{\frac{3}{2}} A D_0^{\frac{1}{2}} C_{ox}^* v^{\frac{1}{2}}$$

 $i_p = k v^{\frac{1}{2}}$

To reach this goal, the linear sweep voltammograms of a solution containing 32 mg (1 mM) K_3 [Fe(CN)₆] in 0.5 M of KCl were recorded at several scan rates and then I_p vs. $v^{\frac{1}{2}}$ was plotted.

A) Linear sweep voltammograms of 1 mM K₃[Fe(CN)₆] in KCl (0.5 M), in various scan rate at glassy carbon electrode. Scan rate from a to g: 10, 25, 50, 75, 125, 150 and 175 mV/s. B) The plot of I vs. $\nu^{1/2}$. Temperature =25±1 °C.

The slope (k) of the line is equal to: 1.99×10^{-5}

Slope =
$$(2.69 \times 10^5) n^{\frac{3}{2}} A D_0^{\frac{1}{2}} C_{ox}^* = 1.99 \times 10^{-5}$$

In randles- sevcik equation, *D* is the diffusion coefficient (7.6 × 10⁻⁶), *n* is the number of the electron, *A* is the electroactive surface and C_{ox}^* is the K₃[Fe(CN)₆] concentration.

1.99×10⁻⁵=
$$(2.69 \times 10^5)(1)^{\frac{3}{2}} \text{ A} (7.6 \times 10^{-6})^{1/2} (10^{-6})$$

A= 0.026 cm²

M. J. A. Shiddiky, A. A. J. Torriero, C. Zhao, I. Burgar, G. Kennedy, and A. M. Bond, J. Am. Chem. Soc., 2009, 131, 7976-7989

Mass spectrum of 3a

¹H NMR spectrum of **3a**

¹H NMR spectrum of **3a** (with D_2O)

¹³C NMR spectrum of **3a**

FTIR spectrum of 3b

Mass spectrum of 3b

¹H NMR spectrum of **3b**

¹³C NMR spectrum of **3b**

FTIR spectrum of 3c

Mass spectrum of 3c

¹³C NMR spectrum of **3c**

