Supporting Information

Silver doped reduced graphene oxide as promising plasmonic photocatalyst for

oxidative coupling of benzylamines under visible light irradiation

Anurag Kumar,^{1,2} Aathira M. S.,¹ and Suman L. Jain^{1*}

¹Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun India 248005

²Academy of Scientific and Innovative Research (AcSIR), New Delhi India 110001

Calculation: -

The identification of product was done by gas chromatography-mass spectrometry (GC-MS). (Fig. S1) The conversion of benzylamine, yield and selectivity of imine were analysed based on the following equations:

Conversion (%) = $[(C_0 - C_{benzylamine})/C_0] \times 100$ Yield (%) = $C_{imine}/C_0 \times 100$ Selectivity (%) = $[C_{imine}/(C_0 - C_{benzylamine})] \times 100$

Where C_0 is the whole quantity of benzylamine in the reaction mixture before irradiation; $C_{benzylamine}$ is the amount of benzylamine in the solution after irradiation for 12 h; C_{imine} is the amount of imine in the solution after irradiation for 12 h.

Fig. S13: GC-MS of the product obtained from oxidative coupling of benzylamine using Ag@rGO photocatalyst after 12 h irradiation time.

Table	S1:	А	comparison	of	the	Ag@rGO	with	literature	known	photocatalyst	for	the
oxidation of benzylamine												

Entry	Photocatalyst	T [°C]	Oxidant	Product Yield	Ref. No.
				[%] ^a or [µmol g ⁻¹ h ⁻	
				1]b	
1	Ag@rGO	RT	O ₂	97ª	This
					work
2	Cu ₂ O/CQD	RT	O ₂	95ª	[1]
3	Au/TiO ₂	RT	Air	883 ^b	[2]
4	Au-Pd/ZrO ₂	45 °C	O ₂	198 ^b	[3]
5	Fe(bpy) ₃ /npg-C ₃ N ₄	RT	O ₂	94ª	[4]
6	BiVO ₄ /g-C ₃ N ₄	RT	O ₂	1089 ^b	[5]
7	WS_2	50 °C	O ₂	94ª	[6]
8	WO ₃	RT	O ₂	950 ^b	[7]

Fig. S2: EDX Pattern of Ag@rGO showing elemental composition

Fig. S3: Tauc plot for band gap determination of a) rGO, b) Ag@rGO.

Fig. S4: PL spectra of a) rGO, b) Ag@ rGO photocatalyst.

Fig. S5: TGA diagram of Ag@rGO.

Fig. S6: N₂ adsorption-desorption isotherms; b) BJH pore size distribution curves of Ag@rGO.

Fig. S7: ¹H NMR of N-benzylidenebenzylamine.

Fig. S8: ¹H NMR of N-(4-methoxybenzylidene)-p-methoxybenzylamine.

Fig. S9: ¹H NMR of N-(4-methylbenzylidene)-p-methylbenzylamine.

Fig. S10: ¹H NMR of N-(2-methylbenzylidene)-o-methylbenzylamine.

Fig. S11: ¹H NMR of N-(4-chlorobenzylidene)-p-chlorobenzylamine.

Fig. S12: ¹H NMR of N-(4-bromobenzylidene)-p-fluorobenzylamine.

Fig. S13: ¹H NMR of N-(4-cyanobenzylidene)-p-fluorobenzylamine.

References:

- [1]. A. Kumar, A. Hamdi, Y. Coffinier, A. Addad, P. Roussel, R. Boukherroub, S. L. Jain, J. *Photochem. Photobio. A*, 2018, 356, 457-463.
- [2]. S. Naya, K. Kimura, H. Tada, ACS Catal., 2012, 3, 10.
- [3]. S. Sarina, H. Y. Zhu, E. Jaatinen, Q. Xiao, H. W. Liu, J. F. Jia, C. Chen, J. Zhao, J. Am. Chem. Soc., 2013, 135, 5793.
- [4]. A. Kumar, P. Kumar, C. Joshi, S. Ponnada, A. K. Pathak, A. Ali, B. Sreedhar, S. L. Jain, Green Chem., 2016, 18, 2514.
- [5]. S. Samanta, S. Khilari, D. Pradhan, R. Srivastava, ACS Sustainable Chem. Eng., 2017, 5, 2562.
- [6]. F. Raza, J. H. Park, H. R. Lee, H. I. Kim, S. J. Jeon, J. H. Kim, ACS Catal., 2016, 6, 2754.
- [7]. N. Zhang, X. Y. Li, H. C. Ye, S. G. Chen, H. X. Ju, D. B. Liu, L. Yue, W. Ye, C. M. Wang, Q. Xu, J. F. Zhu, L. Song, J. Jiang, Y. J. Xiong, *J. Am. Chem. Soc.*, 2016, 138, 8928.