Supporting Information

Thermo- and Photostable Symmetrical Benzo[*cd*]indolenyl-Substituted Heptamethine Cyanine Dyes Carrying a Tetrakis(pentafluorophenyl)borate that Absorb Only Near-Infrared Light over 1000 nm

Kazumasa Funabiki,^{1*} Ryuta Yanagawa,¹ Yasuhiro Kubota,¹ and Toshiyasu Inuzuka²

¹ Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

² Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

(Contents)

Photographs of TLC plates	p. 2
¹ H and ¹³ C NMR for 2	p. 3
¹ H and ¹³ C NMR for 3	p. 4
¹ H and ¹³ C NMR for 5a	p. 5
¹ H, ¹³ C NMR, and ¹⁹ F NMR for 5b	p. 6-7
¹ H, ¹³ C NMR, and ¹⁹ F NMR for 6	p. 8-9
¹ H, ¹³ C NMR, and ¹⁹ F NMR for 5 c	p.10-11
¹ H, ¹³ C NMR, and ¹⁹ F NMR for 5d	p. 12-13

Figure S1. TLC plates of the prepared symmetrical benzo[*cd*]indolenyl-substituted heptamethine cyanine dyes **5a,b** using CH₂Cl₂/hexane (a), CH₂Cl₂ (b), and MeOH/ CH₂Cl₂ (c).

The obtained symmetrical benzo[*cd*]indolenyl-substituted heptamethine cyanine dye **5a** carrying the ClO₄⁻ anion is highly polar. As a result, the R_f value of **5a** carrying the ClO₄⁻ anion is 0.20, using much polar solvents, such as methanol/CH₂Cl₂ (v/v = 1/100) as an eluent on a TLC plate, as shown in Figure S3(c). Interestingly, the R_f value (0.88) of the corresponding heptamethine cyanine dye **5b** carrying the (C₆F₅)₄B⁻ anion is much greater than that of the dye **5a**, using the same mixed solvents, as shown in Figure 3(c). As shown in Figures 3(a),(b), even the use of less polar solvents, such as CH₂Cl₂/hexane (v/v = 2/1) or CH₂Cl₂, as eluents on TLC plates resulted in moderate to high R_f values (0.40 and 0.83) for the dye **5b**, although the R_f values for the dye **5a** carrying the ClO₄⁻ anion are zero under the same conditions.

1-Octylbenzo[cd]indol-2(1H)-one (2)

2-((*E*)-2-((*E*)-2-Chloro-3-((*E*)-2-(1-octylbenzo[*cd*]indol-2(1*H*)ylidene)ethylidene)cyclopent-1-en-1-yl)vinyl)-1octylbenzo[*cd*]indol-1-ium perchlorate (5a)

¹H NMR

20.16 300.0 200.0 8 100.0 394 (<u>%</u> 1.99 6 abundance 6.0 5.0 7.0 3.0 2.0 4.0 1.0 1,946 1,933 1,932 1,200 1,200 1,201 1,203 6472 6449 4199 4188 4176 5322 5320 5318 3.101 ----X : p

¹H NMR

2-((<i>E</i>)-2-((<i>E</i>)-2-Chloro-3-((<i>E</i>)-2-(1-octylbenzo[<i>cd</i>]indol-2(1 <i>H</i>)-
ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-1-octylbenzo[cd]indol-
1-ium tetrakis(perfluorophenyl)borate (6)

= 23.60 1.0 60 0.8 0.7 0.6 0.5 0.4 14. 03 4.27 0.2 4 200 abundance 0 0.1 4030 4013 3994 3994 5.0 6.0 3.0 7.0 4 6485 6449 8808 8772 × 2752 ----0008 X : parts per

¹H NMR

¹H NMR

¹H NMR

¹³C NMR

		1
		8.00
	400	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	and have a second second	سيسبعا أتر
* -131.0 -133.0 -135.0 -137.0 -139.0 -141.0 -143.0 -145.0 -147.0 -149.0 -151.0 -153.0 -155.0 -157.0 -159.0 -161.0	-163.0 -165.0	-167.0
79525	(63.055 (63.055) (63.055)	66.739